K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

2n - 2 là thể khuyết nhiễm ạ

*HỌC TỐT*

3 tháng 2 2022

gfvfvfvfvfvfvfv555

11 tháng 12 2021

a/ Gọi D là tiếp điểm của tiếp tuyến từ M với (O)

Xét tg vuông MAO và tg vuông MDO có

OA=OD (bán kính (O))

MA=MD (hai tiếp tuyến cùng xp từ 1 điểm thì KC từ điểm đó đến 2 tiếp điểm = nhau)

=> tg MAO = tg MDO (hai tg vuông có 2 cạnh góc vuông = nhau) \(\Rightarrow\widehat{MOA}=\widehat{MOD}\) (1)

Xét tg vuông NBO và tg vuông NDO

Chứng minh tương tự \(\Rightarrow\widehat{NOB}=\widehat{NOD}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{MOA}+\widehat{NOB}=\widehat{MOD}+\widehat{NOD}\)

Mà \(\widehat{MOA}+\widehat{NOB}+\widehat{MOD}+\widehat{NOD}=180^o\)

\(\Rightarrow\widehat{MOD}+\widehat{NOD}=\widehat{MON}=90^o\)

b/

Ta có 

AM=DM; BN=DN  (hai tiếp tuyến cùng xp từ 1 điểm thì KC từ điểm đó đến 2 tiếp điểm = nhau)

=> AM+BN=DM+DN=MN

Xét tg vuông MON có

\(OD^2=DM.DN\) (trong tg vuông bình phương đường cao xuất phát từ đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow OD^2=AM.BN\) 

OD là bán kính (O) không đổi => OD2 không đổi => AM.BN không đổi

10 tháng 12 2021

rút gọn giúp mình nha mình quên ghi

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)

\(A=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}-\frac{6\sqrt{x}-4}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)

\(A=\frac{\sqrt{x}.\left(\sqrt{x}+1\right)+3.\left(\sqrt{x}-1\right)-6\sqrt{x}+4}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}\)

\(A=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right).\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

10 tháng 12 2021
Đáp án bằng 2
10 tháng 12 2021
= 2 (theo toán chuẩn lớp 1)
10 tháng 12 2021

=1/2=0,5

10 tháng 12 2021

0,5 nha bạn

Chúc bạn hok tốt

11 tháng 12 2021

Ta có \(a=1;b=-3;c=-7\)

Nhận thấy a và c trái dấu, do đó phương trình đã cho luôn có hai nghiệm phân biệt \(x_1;x_2\)

Theo định lý Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-3}{1}=3\\x_1x_2=\frac{c}{a}=\frac{-7}{1}=-7\end{cases}}\)

Như vậy đặt  \(A=2x_1^3-3x_1^2x_2+2x_2^3-3x_1x_2\)\(=2\left(x_1^3+x_2^3\right)-3x_1x_2\left(x_1-1\right)\)

\(=2\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)-3.\left(-7\right)\left(x_1-1\right)\)(vì \(x_1x_2=-7\left(cmt\right)\))

\(=2.3\left(x_1^2+2x_1x_2+x_2^2-3x_1x_2\right)+21\left(x_1-1\right)\)(vì \(x_1+x_2=3\left(cmt\right)\))

\(=6\left[\left(x_1+x_2\right)^2-3.\left(-7\right)\right]+21x_1-21\)

\(=6\left(3^2+21\right)+21x_1-1\)\(=6.30+21x_1-1\)\(=179+21x_1\)

Xét phương trình \(x^2-3x-7=0\)có hai nghiệm phân biệt \(x_1,x_2\), do đó có hai trường hợp của \(x_1\)

\(\orbr{\begin{cases}x_1=\frac{-b+\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)+\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3+\sqrt{9+28}}{2}=\frac{3+\sqrt{37}}{2}\\x_2=\frac{-b-\sqrt{b^2-4ac}}{2a}=\frac{-\left(-3\right)-\sqrt{\left(-3\right)^2-4.1.\left(-7\right)}}{2.1}=\frac{3-\sqrt{9+28}}{2}=\frac{3-\sqrt{37}}{2}\end{cases}}\)

Trường hợp \(x_1=\frac{3+\sqrt{37}}{2}\)thì \(A=179+21x_1=179+21.\frac{3+\sqrt{37}}{2}=\frac{358+63+21\sqrt{37}}{2}=\frac{421+21\sqrt{37}}{2}\)

Trường hợp \(x_1=\frac{3-\sqrt{37}}{2}\)thì 

\(A=179+21x_1=179+21.\frac{3-\sqrt{37}}{2}=\frac{358+63-21\sqrt{37}}{2}=\frac{421-21\sqrt{37}}{2}\)

Vậy ...

10 tháng 12 2021

bằng 4,5 nhé bạn , sai thùi cho mình xin lỗi

10 tháng 12 2021

4,5 nha bạn