Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta ABE\)nội tiếp đường tròn đường kính \(AB\)
\(\Rightarrow\)\(\Delta ABE\perp E\)
\(\Rightarrow\)\(AEB\lambda=90\)độ
Tứ giác\(BEFI\)nội tiếp đường tròn đường kính \(FB\)
ta có tam giác AKI vuông tại K nên AKI nằm trên đường tròn đường kinh AI
tam giác AHI vuông tại H nên AHI nằm trên đường tròn đường kinh AI
Nên AKIH nằm trên đường tròn đường kinh AI, tâm là trung điểm của AI
ĐK : m,n > 0
\(=\frac{\left(\sqrt{m}-\sqrt{n}\right)\left(\sqrt{m}+\sqrt{n}\right)}{\sqrt{m}-\sqrt{n}}+\frac{\left(\sqrt{m}+\sqrt{n}\right)^2}{\sqrt{m}+\sqrt{n}}\)( mẫu phân thức 2 phải là như này chứ nhỉ )
\(=\left(\sqrt{m}+\sqrt{n}\right)+\left(\sqrt{m}+\sqrt{n}\right)=2\left(\sqrt{m}+\sqrt{n}\right)\)
ĐK : a,b > 0
\(=\left[\frac{\sqrt{b}}{\sqrt{a}\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}}{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}\right]\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{a-b}{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}\cdot\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b4 :
\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)
\(c,x+2\sqrt{xy}+y=\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(d,x-4\sqrt{x}\sqrt{y}+4y=\left(\sqrt{x}-2\sqrt{y}\right)^2\)
b5:
\(a,ĐK:x\ge1\)
\(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)
\(\Leftrightarrow3\sqrt{x-1}+2\sqrt{x-1}-4\sqrt{x-1}=1\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
\(b,ĐK:x\ge5\)
\(\frac{1}{3}\sqrt{9\left(x-5\right)}+\frac{1}{2}\sqrt{4\left(x-5\right)}-\frac{7}{5}\sqrt{25\left(x-5\right)}=2\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{x-5}-7\sqrt{x-5}=2\)
\(\Leftrightarrow-5\sqrt{x-5}=2\)
\(\Leftrightarrow\sqrt{x-5}=-\frac{2}{5}\left(voli\right)\)
\(c,ĐK:x>0\)
\(\sqrt{x}+\frac{9}{\sqrt{x}}=6\)
\(\Leftrightarrow x+9=6\sqrt{x}\)
\(\Leftrightarrow x-6\sqrt{x}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\)
\(\Leftrightarrow x=9\left(tm\right)\)
\(ĐK:x\ge2\)
\(\Leftrightarrow x+2+\sqrt{x-2}-2\sqrt{x+1}=0\)
\(\Leftrightarrow\left(\sqrt{x+1}-1\right)^2+\sqrt{x-2}=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+1}-1=0\\\sqrt{x-2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}\left(voli\right)}\)
Vậy phương trình vô nghiệm