giúp mình giải chi tiết nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo cô si có \(ab\le\frac{a^2+b^2}{2}\Rightarrow a^2+ab+b^2\le a^2+\frac{a^2+b^2}{2}+b^2\)
\(\Rightarrow\frac{a^5}{a^2+ab+b^2}\ge\frac{a^5}{\frac{3}{2}\left(a^2+b^2\right)}=\frac{2}{3}\cdot\frac{a^5}{a^2+b^2}\)
tương tự cm đc \(\frac{b^5}{b^2+bc+c^2}\ge\frac{2}{3}\cdot\frac{b^5}{b^2+c^2}\) và \(\frac{c^5}{c^2+ac+a^2}\ge\frac{2}{3}\cdot\frac{c^5}{c^2+a^2}\)
\(\Rightarrow VT\ge\frac{2}{3}\left(\frac{a^5}{a^2+b^2}+\frac{b^5}{b^2+c^2}+\frac{c^5}{c^2+a^2}\right)\)
\(\Rightarrow VT\ge\frac{2}{3}\left(\frac{a^3\left(a^2+b^2\right)-a^3b^2}{a^2+b^2}+\frac{b^3\left(b^2+c^2\right)-b^3c^2}{b^2+c^2}+\frac{c^3\left(c^2+a^2\right)-c^3a^2}{c^2+a^2}\right)\)
áp dụng cô si ta có \(\hept{\begin{cases}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{cases}\Rightarrow\hept{\begin{cases}\frac{-a^3b^2}{a^2+b^2}\ge\frac{a^2b}{2}\\\frac{-b^3c^2}{b^2+c^2}\ge\frac{b^2c}{2}\\\frac{-c^3a^2}{c^2+a^2}\ge\frac{c^2a}{2}\end{cases}}}\)
\(\Rightarrow VT\ge\frac{2}{3}\left(a^3+\frac{a^2b}{2}+b^3+\frac{b^2c}{2}+c^3+\frac{c^2a}{2}\right)\)
hjhj khó quá :v
a) \(\sqrt{3x-2}-\sqrt{2x+3}=\frac{3x-2-2x-3}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}\)
\(\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}=\frac{x-5}{2}\Leftrightarrow\frac{x-5}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{x-5}{2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\right)=0\). Do \(\frac{1}{\sqrt{3x-2}+\sqrt{2x+3}}-\frac{1}{2}\ne0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\). Vậy tập nghiệm của pt \(S=\left\{5\right\}\)
b) \(\sqrt{2}\left(x^2+8\right)=5\sqrt{x^3+8}\)
\(\Leftrightarrow x^2\sqrt{2}+8\sqrt{2}=5\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chắc cũng dùng trục căn thức ở mẫu nhưng mình chả biết làm thế nào :v
a, đk \(x\ge\frac{2}{3}\)
\(\sqrt{3x-2}-\sqrt{2x+3}=\frac{x-5}{2}\)
đặt \(\hept{\begin{cases}\sqrt{3x-2}=a\\\sqrt{2x+3}=b\end{cases}\left(a;b\ge0\right)}\)
pt trở thành : \(a-b=\frac{a^2-b^2}{2}\) \(\Leftrightarrow a^2-b^2=2a-2b\)
\(\Leftrightarrow a^2-2a-b^2+2b=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b-1\right)^2=0\)
\(\Leftrightarrow\left(a-1-b+1\right)\left(a-1+b-1\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-2\right)=0\)
th1 : a - b = 0 <=> a = b hay \(\sqrt{3x-2}=\sqrt{2x+3}\)
\(\Leftrightarrow3x-2=2x+3\Leftrightarrow x=5\left(tm\right)\)
th2 : a + b - 2 = 0 hay \(\sqrt{3x-2}+\sqrt{2x+3}-2=0\)
\(\Leftrightarrow\sqrt{3x-2}=2-\sqrt{2x+3}\left(đk:x\le\frac{1}{2}\left(voli\right)\right)\)
vậy x = 5
\(đk:x\ge-1\)
\(4\sqrt{x+5}-\sqrt{x+1}=9+x\)
\(\Leftrightarrow4\sqrt{x+5}-\sqrt{x+1}-x-9=0\)
\(\Leftrightarrow4\frac{\left(\sqrt{x+5}-2\right)\left(\sqrt{x+5}+2\right)}{\sqrt{x+5}+2}-\sqrt{x+1}-x-1=0\)
\(\Leftrightarrow4\cdot\frac{x+5-4}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow4\cdot\frac{x+1}{\sqrt{x+5}+2}-\sqrt{x+1}-\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}\right)=0\)
th1: \(\frac{4}{\sqrt{x+5}+2}-1-\sqrt{x+1}=0\)
có : \(x\ge-1\Rightarrow\frac{4}{\sqrt{x+5}+2}\le1\Rightarrow\frac{4}{\sqrt{x+5}+2}-1\le0\) và \(-\sqrt{x+1}\le0\) nên
\(\hept{\begin{cases}\frac{4}{\sqrt{x+5}+2}-1=0\\\sqrt{x+1}=0\end{cases}}\Leftrightarrow x=-1\left(tm\right)\)
th2 : \(\sqrt{x+1}=0\Leftrightarrow x=-1\left(tm\right)\)
vậy
1. \(\sin=\frac{đ}{h}\) ; \(\cos=\frac{k}{h}\) ; \(\tan=\frac{đ}{k}\) ; \(\cot=\frac{k}{đ}\)
2. A B C
a, có \(\tan\widehat{C}=\frac{AB}{AC}\) nên \(\tan34^o=\frac{AB}{86}\)
\(\Rightarrow AB\simeq58\left(m\right)\)
b, \(\tan\widehat{C}=\frac{AB}{AC}=\frac{7}{4}\)
\(\Rightarrow\widehat{C}\simeq60^o\)