Giải các phương trình sau :
a) 3x(x - 1) + 2(x - 1) = 0
b) x(2x + 4) = (3x - 1)(2x + 4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên, Tính S1=1+2+3+...+n=\(\frac{n\left(n+1\right)}{2}\)
*/ Tính S2=12+22+32+...+n2
Đặt: S2'=1.2+2.3+3.4+...+n(n+1)
=>3S2'=1.2.3+2.3.3+3.4.3+...+n(n+1).3=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)−(n−1)]
Nhân ra và rút gọn ta được: 3S2′=n(n+1)(n+2) => S2'=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
Ta lại có: S2′=1.2+2.3+3.4+...+n(n+1)=(12+22+32+...+n2)+(1+2+3+...+n)=S2+S1=S2+\(\frac{n\left(n+1\right)}{2}\)
=> S2=S2'-\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\) -\(\frac{n\left(n+1\right)}{2}\)=\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
S3=
\(\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(=\frac{1}{3}\left(\frac{3}{1.2.3.4}+\frac{3}{2.3.4.5}+...+\frac{3}{27.28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}-3x=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+...+\frac{1}{27.28.29.30}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{27.28.29}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)-3x=\frac{1}{3}.\left(\frac{1}{1.2.3}-\frac{1}{28.29.30}\right)\)
\(\Leftrightarrow\frac{4949}{19800}-3x=\frac{451}{8120}\)
\(\Leftrightarrow x\approx0,0648\)
a) Kẻ EK vuông góc AH ( K thuộc AH )
Xét tứ giác KEDH, có:
EKH = 90 0
KHD = 90 0
HDE = 90 0
=> KEDH là hcn ( tứ giác có 3 góc vuông )
=> KE = HD ( cạnh đối )
Xét 2 tam giác vuông BAH và AEK, có:
AH = EK (cùng = HD)
BAH = AEK (cùng phụ HAE)
=> tam giác BAH = tam giác AEK (gn-cgv)
=> AB = AE (ctu)
b) Nối AM, MD
Tam giác AEB vuông tại A, có:
AM làm trung tuyến (M là tđ của BE)
BE cạnh huyền
=> AM = 1/2 BE
Tam giác BED vuông tại D có
DM là trung tuyến (M là tđ của BE)
BE là cạnh huyền
=> DM = 1/2 BE
=> AM = DM (cùng =1/2 BE)
Tam giác AHM và tam giác DHM có
HA = HD (GT)
AM = DM (cmt)
HM chung
=> Tam giác AHM = tam giác DHM (c-c-c)
=> AHM = DHM
=> HM là tia phân giác AHD
x - 100 = 200 + 900
x - 100 = 1100
x = 1100 + 100
x = 1200
x + 100 = 300 - 400
x + 100 = - 100
x = - 100 - 100
x = - 200
x+100=200+900
x+100=1000
x=1000-100
x=900
x+100=300-400
x+100=-100
x=-100-100
x=-200
x + 200 = 300 - 600
x + 200 = -300
x = -300 - 200
x = -500
x - 200 = 300
x = 300 + 200
x = 500 k mk nha~
a)
\(\Leftrightarrow3x^2-3x+2x-2=0\)
\(\Leftrightarrow3x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+2\right)=0\)
Tới đây cho mỗi cái = 0 rồi tìm x
b)
\(\Leftrightarrow2x^2+4x=6x^2+12x-2x-4\)
\(\Leftrightarrow2x^2+4x-6x^2-12x+2x+4=0\)
\(\Leftrightarrow-4x^2-6x+4=0\)
\(\Leftrightarrow-4x^2+2x-8x+4=0\)
\(\Leftrightarrow-2x\left(2x-1\right)-4\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(-2x-4\right)=0\)
Tới đây cũng cho mỗi cái = 0 và tìm x
a, 3x ( x - 1 ) + 2 ( x - 1 ) = 0
<=> ( x - 1 ) ( 3x + 2 ) = 0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0+1=1\\3x=-2\Rightarrow x=\frac{-2}{3}\end{cases}}}\)
Vậy ...