K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

100 - 20 . x = 60

20 .x = 100 - 60

20 . x = 40

x = 40 : 20

x = 2

30 + 60 . x = 90

60 . x = 90 - 30

60 . x = 60

x = 60 : 60

x = 1

22 tháng 11 2016

a) x=2

b) x=1

k nha. thanks

21 tháng 11 2016

Hình đa giác TenDaGiac1: DaGiac[B, A, 4] Hình đa giác TenDaGiac2: DaGiac[A, C, 4] Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, E] của Hình đa giác TenDaGiac1 Đoạn thẳng k: Đoạn thẳng [E, D] của Hình đa giác TenDaGiac1 Đoạn thẳng l: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac1 Đoạn thẳng m: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac2 Đoạn thẳng n: Đoạn thẳng [C, F] của Hình đa giác TenDaGiac2 Đoạn thẳng p: Đoạn thẳng [F, H] của Hình đa giác TenDaGiac2 Đoạn thẳng q: Đoạn thẳng [H, A] của Hình đa giác TenDaGiac2 Đoạn thẳng r: Đoạn thẳng [E, C] Đoạn thẳng s: Đoạn thẳng [B, H] Đoạn thẳng d: Đoạn thẳng [O1, O2] Đoạn thẳng e: Đoạn thẳng [O2, I] Đoạn thẳng f_1: Đoạn thẳng [O1, I] A = (-0.2, 4.86) A = (-0.2, 4.86) A = (-0.2, 4.86) B = (-1, 1.46) B = (-1, 1.46) B = (-1, 1.46) C = (4.56, 0.9) C = (4.56, 0.9) C = (4.56, 0.9) Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm I: Trung điểm của g Điểm I: Trung điểm của g Điểm I: Trung điểm của g

a. Ta thấy \(\widehat{EAC}=\widehat{BAH}\left(=\widehat{BAC}+90^o\right)\)

Vậy nên \(\Delta EAC=\Delta BAH\left(c-g-c\right)\)

Từ đó suy ra \(\widehat{ACE}=\widehat{AHB}\)

Vì \(\widehat{AHB}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{ACE}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{HJC}=90^o\)

Vậy \(EC\perp BH.\)

b. Ta thấy \(O_1\) là trung điểm EB. Vậy thì O1I là đường trung bình của tam giác BEC hay O1I // EC. Tương tự O2I // BH.

Lại có \(EC\perp BH\)  nên \(O_1I\perp O_2I.\)

Vậy tam giác O1O2I là tam giác vuông tại I.

20 tháng 11 2016

Áp dụng định lý Pi-ta-go đó 

21 tháng 11 2016

\(a,b,c\) là 3 cạnh của tam giác nên \(a,b,c>0\).
Chứng minh bất đẳng thức phụ 
Giả sử: \(\sqrt{2\left(a^2+b^2\right)}\ge a+b\)
            \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
            \(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

Giả sử: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
             \(\Leftrightarrow2\left(a+b+c\right)\le\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\)
Ta có: \(\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge a+b+b+c+a+c\)
        \(\Rightarrow\sqrt{2\left(a^2+b^2\right)}+\sqrt{2\left(b^2+c^2\right)}+\sqrt{2\left(a^2+c^2\right)}\ge2\left(a+b+c\right)\)
Vậy: \(\sqrt{2}\left(a+b+c\right)\le\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\).
Ta chứng minh: \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}< \sqrt{3}\left(a+b+c\right)\)
Áp dụng bất đẳng thức Bu  - nhi - a  ta có:
\(\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{a^2+c^2}\right)^2\le\left(1+1+1\right)\left(a^2+b^2+b^2+c^2+a^2+c^2\right)\)
                                                                                   \(=6\left(a^2+b^2+c^2\right)\)
Ta cần chứng minh: \(6\left(a^2+b^2+c^2\right)< \left(\sqrt{3}\left(a+b+c\right)\right)^2\)
                     \(\Leftrightarrow2\left(a^2+b^2+c^2\right)< \left(a+b+c\right)^2\)
                     \(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ac\)
                     \(\Leftrightarrow\left(a-b\right)^2+c^2< 2bc+2ac\)(1)
Do \(a,b,c\)là 3 cạnh của tam giác suy ra \(a-b< c\)
Gải sử \(a>b\) suy ra \(\left(a-b\right)^2< c^2\)
Thay vào (1 ) ta có \(c^2+c^2< 2bc+2ac\)
                            \(\Leftrightarrow2c^2< 2c\left(a+b\right)\)
                             \(\Leftrightarrow c< a+b\)( Đúng với a, b, c là 3 cạnh của tam giác)
Vậy BĐT đã được chứng minh.

20 tháng 11 2016

phân tích thành nhân tử ak

20 tháng 11 2016

Có bị thiếu đề không bạn

18 tháng 11 2016

Ta có 

\(1A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)

\(\le5.5=25\)

\(\Rightarrow-5\le A\le5\)

Vậy GTNN là - 5 đạt được khi x = y = - 1

19 tháng 11 2016

tuong Min=5 chu

18 tháng 11 2016

Áp dụng bất đẳng thức Holder, ta có: 

\(\left[\left(\sqrt[3]{a}\right)^3+\left(\sqrt[3]{b}\right)^3+1^3\right].\left(1^3+1^3+1^3\right).\left(1^3+1^3+1^3\right)\ge\left(\sqrt[3]{a}.1.1+\sqrt[3]{b}.1.1+1.1.1\right)^3\)

<=>\(\left(a+b+1\right).9\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\)

Vì a+b=3

=>\(\left(\sqrt[3]{a}+\sqrt[3]{b}+1\right)^3\le27\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}+1\le3\)

<=>\(\sqrt[3]{a}+\sqrt[3]{b}\le2\)

Dấu "=" xảy ra khi: a=b=1

=>ĐPCM

18 tháng 11 2016

nhầm a+b=2 đó nha  

17 tháng 11 2016

Tự túc là hạnh phúc

17 tháng 11 2016

Ta có

\(n^n-n^2+n-1\)

= (n n - 1) + (- n2 + n)

= (n - 1)(n n-1 + n n-2 +...+ n + 1) - n(n - 1)

= (n - 1)(n n-1 + n n-2 +...+ n2 + 1)

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2 - 1) + n - 2 + 1]

= (n - 1)[(n n-1 - 1) + (n n-2 - 1) + ... + (n2​ - 1) + n - 1]

= (n - 1)2 A(n) (biểu diễn vậy cho gọn nha)

Vậy \(n^n-n^2+n-1\)chia hết cho (n - 1)2

28 tháng 11 2019

Câu hỏi của Ruxian - Toán lớp 7 - Học toán với OnlineMath