Cho a,b,c là các số thực dương. CMR \(\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2+ac}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đầu tiên, hãy để cả hai đồng hồ cát cùng chảy
Sau khi đồng hồ 7 phút chảy hết, lật ngược lại và bắt đầu luộc trứng.
Lúc này, chiếc đồng hồ lớn sẽ còn 11 - 7 = 4 phút. Giờ hãy đợi đồng hồ lớn chảy hết cát và lật ngược lại, bạn sẽ có một khoảng thời gian chính xác là 11 + 4 = 15 phút.
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Do x,y,z là các số thực dương nên ta biến đổi \(P=\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{\sqrt{1+\frac{1}{y^2}}}+\frac{1}{\sqrt{1+\frac{1}{z^2}}}+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Đặt \(a=\frac{1}{x^2};b=\frac{1}{y^2};c=\frac{1}{z^2}\left(a,b,c>0\right)\)thì \(xy+yz+zx=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}=1\)và \(P=\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}+\frac{1}{\sqrt{1+c}}+a+b+c\)
Biến đổi biểu thức P=\(\left(\frac{1}{2\sqrt{a+1}}+\frac{1}{2\sqrt{a+1}}+\frac{a+1}{16}\right)+\left(\frac{1}{2\sqrt{b+1}}+\frac{1}{2\sqrt{b+1}}+\frac{b+1}{16}\right)\)\(+\left(\frac{1}{2\sqrt{c+1}}+\frac{1}{2\sqrt{c+1}}+\frac{c+1}{16}\right)+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{b}-\frac{3}{16}\)
Áp dụng Bất Đẳng Thức Cauchy ta có
\(P\ge3\sqrt[3]{\frac{a+1}{64\left(a+1\right)}}+3\sqrt[3]{\frac{b+1}{64\left(b+1\right)}}+3\sqrt[3]{\frac{c+1}{64\left(c+1\right)}}+\frac{15a}{16}+\frac{15b}{16}+\frac{15c}{16}-\frac{3}{16}\)
\(=\frac{33}{16}+\frac{15}{16}\left(a+b+c\right)\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{abc}\)
Mặt khác ta có \(1=\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\ge3\sqrt[3]{\frac{1}{abc}}\Leftrightarrow abc\ge27\)
\(\Rightarrow P\ge\frac{33}{16}+\frac{15}{16}\cdot3\sqrt[3]{27}=\frac{33}{16}+\frac{15}{16}\cdot9=\frac{21}{2}\)
Dấu "=" xảy ra khi a=b=c hay \(x=y=z=\frac{\sqrt{3}}{3}\)
Áp dụng Bất Đẳng Thức Cosi ta có \(\hept{\begin{cases}\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}\cdot\frac{1+y}{4}\cdot\frac{1}{2}}=\frac{3x}{2}\\\frac{y^3}{1+z}+\frac{1+z}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+z}\cdot\frac{1+z}{4}\cdot\frac{1}{2}}=\frac{3y}{2}\\\frac{z^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{z^3}{1+x}\cdot\frac{1+x}{4}\cdot\frac{1}{2}}=\frac{3z}{2}\end{cases}}\)
Cộng vế theo vế ta được \(P+\frac{3+x+y+z}{4}+\frac{3}{2}\ge\frac{3}{2}\left(x+y+z\right)\)
\(\Leftrightarrow P\ge\frac{5}{4}\left(x+y+z\right)-\frac{9}{4}\)
Mà ta có \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge9\Rightarrow x+y+z\ge3\)
Do đó \(P\ge\frac{5}{4}\cdot3-\frac{9}{4}=\frac{3}{2}\). Dấu "=" xảy ra khi x=y=z=1
Vậy minP=\(\frac{3}{2}\)khi x=y=z=1
Ap dung bo de : \(\sqrt{x-1}+\sqrt{y-1}\le\sqrt{xy}\left(x,y\ge1\right)\) (1)
(1) <=> \(2\sqrt{\left(x-1\right)\left(y-1\right)}\le\left(x-1\right)\left(y-1\right)+1\) (dung theo AM-GM)
Ta co \(VT\le\sqrt{ab}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}=VP\)
Dau = xay ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\\left(ab+1\right)\left(c-1\right)=1\end{cases}}\)
Trước hết, ta đi chứng minh bổ đề: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(*) (với \(p,q\ge1\))
Thật vậy: (*)\(\Leftrightarrow\left(\sqrt{p-1}+\sqrt{q-1}\right)^2\le pq\) \(\Leftrightarrow\left(p-1\right)+\left(q-1\right)+2\sqrt{\left(p-1\right)\left(q-1\right)}\le pq\)\(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(pq-p-q+1\right)+1\) \(\Leftrightarrow2\sqrt{\left(p-1\right)\left(q-1\right)}\le\left(p-1\right)\left(q-1\right)+1\)
Bất đẳng thức cuối đúng theo bất đẳng thức AM - GM vì \(\left(p-1\right)\left(q-1\right)+1\ge2\sqrt{\left(p-1\right)\left(q-1\right).1}=2\sqrt{\left(p-1\right)\left(q-1\right)}\)
Như vậy, ta đã chứng minh được bất đẳng thức phụ: \(\sqrt{p-1}+\sqrt{q-1}\le\sqrt{pq}\)(với \(p,q\ge1\))
Áp dụng vào bài toán, ta được: \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{ab}+\sqrt{c-1}\)\(=\sqrt{\left(ab+1\right)-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\)(q.e.d)
Đẳng thức xảy ra khi \(\hept{\begin{cases}\left(a-1\right)\left(b-1\right)=1\\ab\left(c-1\right)=1\end{cases}}\)
đặt a-1=x2;b-1=y2;c-1=z2 với x,y,z>0. Bất đẳng thức cần chứng minh trở thành
\(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(y^2+1\right)\left(x^2+1\right)+1\right]}\)
áp dụng bđt Cauchy-Schwarz ta có \(x+y\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)}\Rightarrow x+y+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+z}\left(1\right)̸\)
\(\sqrt{\left(x^2+1\right)\left(y^2+1\right)}+z\le\sqrt{\left(x^2+1\right)\left(y^2+1\right)+1}\cdot\sqrt{z^2+1}\)(2)
kết hợp (1) và (2) ta có \(x+y+z\le\sqrt{\left(z^2+1\right)\left[\left(x^2+1\right)\left(y^2+1\right)+1\right]}\)
vậy \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{c\left(ab+1\right)}\left(đpcm\right)\)
Ap dung bdt Mincopxki ta co
\(VT=\sqrt{\left(b-\frac{a}{2}\right)^2+\left(\frac{\sqrt{3}}{2}a\right)^2}+\sqrt{\left(\frac{c}{2}-b\right)^2+\left(\frac{\sqrt{3}}{2}c\right)^2}\)
\(\ge\sqrt{\left(b-\frac{a}{2}+\frac{c}{2}-b\right)^2+\frac{3}{4}\left(a+c\right)^2}=\sqrt{\left(\frac{c-a}{2}\right)^2+\frac{3}{4}\left(a+c\right)^2}=\sqrt{a^2+c^2+ac}=VP\)