cho 2 số dương a+b\(\le\)1,Tìm GTNN của biểu thức:A=ab+\(\frac{1}{ab}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
FI
4
HM
22 tháng 12 2021
Chịu
tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄
TV
1
VN
0
VN
0
Theo bất đẳng thức Cauuchy ta có :
\(\frac{a}{b}< \left(\frac{a+b}{2}\right)< \frac{1}{4}=-ab>-\frac{1}{4}.\)
Do đó ta được biểu thức :
\(A=16ab+\frac{1}{ab}-15ab>2\sqrt{16ab.\frac{1}{ab}}-15ab>8-15.\frac{1}{4}=\frac{17}{4}\)
Dấu đẳng thức xảy ra chỉ khi \(a=b=\frac{1}{2}\)
Vậy \(A_{min}=\frac{17}{4}\)
ta có \(a+b\ge2\sqrt{ab}=>2\sqrt{ab}\le1=>ab\le\frac{1}{4}\)
ta có \(A=16ab+\frac{1}{ab}-15ab\ge2\sqrt{16ab.\frac{1}{ab}}-\frac{15}{4}=\frac{17}{4}\)
Dầu "=" xảy ả khi \(\hept{\begin{cases}a+b=1\\a+b=2\sqrt{ab}\\ab=\frac{1}{4}\end{cases}}=>a=b=\frac{1}{2}\)