giải pt hộ t vs \(12x^2+16x-1-2\sqrt{24x^3+12x^2-6x}-4\sqrt{x^2-x}=4\sqrt{8x^4+9x^2+x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để hàm số đồng biến thì \(k^2-2k-3>0\Leftrightarrow\left(k+1\right)\left(k-3\right)>0\Leftrightarrow\orbr{\begin{cases}k>3\\k< -1\end{cases}}\)
để hàm số nghịch biến thì \(k^2-2k-3< 0\Leftrightarrow\left(k+1\right)\left(k-3\right)< 0\Leftrightarrow-1< k< 3\)
cho x,y là 2 số dương thỏa mãn x+y=1 , tìm GTNN của A= \(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
Bạn vào link tham khảo :
https://hoidap247.com/cau-hoi/1226651
# Hok tốt !
\(x+y=1\Rightarrow\hept{\begin{cases}1-x=y\\1-y=x\end{cases}}\)
thay vào A ta được : \(A=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}\)
\(\Rightarrow A=\frac{1}{\sqrt{y}}-\sqrt{y}+\frac{1}{\sqrt{x}}-\sqrt{x}\)
\(\Rightarrow A=\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)
áp dụng \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có : \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{4}{\sqrt{x}+\sqrt{y}}\)
áp dụng \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\) ta có : \(\left(\sqrt{x}+\sqrt{y}\right)^2\le2\left(\sqrt{x}^2+\sqrt{y}^2\right)=2\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\le\sqrt{2}\)
\(\Rightarrow A\ge\sqrt{8}-\sqrt{2}=\sqrt{2}\)
dấu = xảy ra khi a=y=1/2
\(\sqrt{\frac{2ab}{a^2+b^2}}=\frac{\sqrt{2ab\left(a^2+b^2\right)}}{a^2+b^2}\) mà \(a^2+b^2\ge2ab\) \(\Rightarrow\sqrt{\frac{2ab}{a^2+b^2}}\ge\frac{2ab}{a^2+b^2}\)
tương tự ta có : \(\sqrt{\frac{2bc}{c^2+b^2}}\ge\frac{2bc}{c^2+b^2}\) và \(\sqrt{\frac{2ac}{a^2+c^2}}\ge\frac{2ac}{c^2+a^2}\)
\(\Rightarrow VT\ge\frac{2ab}{a^2+b^2}+\frac{2bc}{b^2+c^2}+\frac{2ac}{a^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{2ab}{a^2+b^2}+1+\frac{2bc}{b^2+c^2}+1+\frac{2ca}{c^2+a^2}+1\)
\(\Rightarrow VT+3\ge\frac{\left(a+b\right)^2}{a^2+b^2}+\frac{\left(b+c\right)^2}{b^2+c^2}+\frac{\left(c+a\right)^2}{c^2+a^2}\)
áp dụng \(\frac{x^2}{y}+\frac{m^2}{n}+\frac{p^2}{q}\ge\frac{\left(x+m+p\right)^2}{y+n+q}\) ta đc :
\(VT+3\ge\frac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{4\left(a+b+c\right)^2}{2\left(a^2+b^2+c^2\right)}\)
\(\Rightarrow VT+3\ge\frac{2\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]}{a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{2\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}+\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}\)
\(\Rightarrow VT+3\ge\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}+2\)
\(\Rightarrow VT\ge\frac{4\left(ab+bc+ca\right)}{a^2+b^2+c^2}-1\left(đpcm\right)\)
dấu = xảy ra khi a=b=c > 0
vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz
x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)
theo bdt cosi ta có:
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)
\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra
\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)
ta giả sử:
\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)
suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng
hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)
em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh
dòng suy ra cuối cùng mình ghi lộn, phải là -8+2021 = 2013 mới đúng :v
\(a^2+\frac{8}{a^2}+\frac{b^2}{8}=8\)
\(\Leftrightarrow8a^4+64+a^2b^2=64a^2\)
\(\Leftrightarrow a^2b^2=64a^2-8a^4-64\)
\(\Leftrightarrow a^2b^2=-8\left(a^4-8a^2+8\right)\)
\(\Leftrightarrow a^2b^2=-8\left[\left(a^2-4\right)^2-8\right]\)
\(\Leftrightarrow a^2b^2=-8\left(a^2-4\right)^2+64\le64\)
\(\Leftrightarrow-8\le ab\le8\)
\(\Rightarrow A\ge-8\sqrt{6}+2021\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}ab=-8\\a^2-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\pm4\\a=\pm2\end{cases}}\)
dùng pp đối lập mà không có ra :v
okeyyyyy