K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Phạm Quang Chính - Toán lớp 6 - Học toán với OnlineMath

26 tháng 4 2018

ta có (ab+ac)/2 = (ba+bc)/3 = (ca+cb)/4 

=ab+ac-ba-bc+ca+cb/2-3+4 = 2ac/3

=ab+ac+ba+bc-ca-cb/2+3-4 = 2ab

=ab+ac-ba-bc-ca-cb/2-3-4 = 2bc/5

=> 2ac/3=2ab=2bc/5

Ta có 2ac/3=2ab/1 =>c/3 = b/1 => c/15 = b/5    (1)

          2ac/3 = 2bc/5 => a/3 = b/5                         (2)

từ (1) và(2) => a/3 = b/5 = c/15

23 tháng 12 2018

bạn 2-3-4=5 ??

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

10 tháng 7 2017

https://h.vn/hoi-dap/question/221389.html kham khảo ak!!! bài dài quá lười đánh máy lắm, thông cảm!!!^~

27 tháng 3 2019

Đặt A=2.22+3.23+4.24+...+n.2nA=2.22+3.23+4.24+...+n.2n

Ta có:

A=2.22+3.23+4.24+...+n.2nA=2.22+3.23+4.24+...+n.2n

⇒2A=2(2.22+3.23+4.24+...+n.2n)⇒2A=2(2.22+3.23+4.24+...+n.2n)

⇒2A=2.23+3.24+4.25+...+n.2n+1⇒2A=2.23+3.24+4.25+...+n.2n+1

⇒2A−A=2.22+(3.23−2.23)+...+(n−n+1).2n−n.2n+1⇒2A−A=2.22+(3.23−2.23)+...+(n−n+1).2n−n.2n+1

⇒A=2.22+23+24+...+2n−n.2n+1⇒A=2.22+23+24+...+2n−n.2n+1

⇒A=22+(22+23+...+2n+1)−(n+1).2n+1⇒A=22+(22+23+...+2n+1)−(n+1).2n+1

⇒A=−22−(22+23+...+2n+1)+(n+1).2n+1⇒A=−22−(22+23+...+2n+1)+(n+1).2n+1

Đặt B=22+23+...+2n+1B=22+23+...+2n+1

⇒2B=23+24+...+2n+2⇒2B=23+24+...+2n+2

⇒2B−B=2n+2−22⇒B=2n+2−22⇒2B−B=2n+2−22⇒B=2n+2−22

⇒A=22−2n+2+22+(n+1).2n+1⇒A=22−2n+2+22+(n+1).2n+1

⇒A=(n+1).2n+1−2n+2⇒A=(n+1).2n+1−2n+2

⇒A=2n+1(n+1−2)⇒A=2n+1(n+1−2)

⇒A=(n−1).2n+1=2(n−1).2n⇒A=(n−1).2n+1=2(n−1).2n

Mà A=2(n−1).2n=2n+10A=2(n−1).2n=2n+10

⇒2(n+1)=210⇒n−1=29⇒2(n+1)=210⇒n−1=29

⇒n−1=512⇒n=513⇒n−1=512⇒n=513

Vậy n=513

1 tháng 5 2017

Áp dụng BĐT Cauchy Schwarz ta có:

\(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+xz\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\left(1\right)\)

Mặt khác:

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

\(\Leftrightarrow x^2+y^2+z^2=9-2\left(xy+yz+xz\right)\)

Kết hợp với \(\left(1\right)\Rightarrow9-2\left(xy+yz+xz\right)\ge xy+yz+xz\)

\(\Leftrightarrow3\left(xy+yz+xz\right)\le9\Leftrightarrow xy+yz+xz\le3\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\\x+y+z=3\end{cases}}\Leftrightarrow x=y=z=1\)

Vậy \(Max\) biểu thức là \(3\Leftrightarrow x=y=z=1\)

6 tháng 4 2017

Với \(x,y,z\)ta có :

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2>=0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge=0\)

\(x^2+y^2+z^2-xy-yz-zx\ge=0\)

\(\left(y+x+z\right)^2\ge=3\left(x+y+z\right)\)

\(\frac{\left[\left(x+y+z\right)^2\right]}{3}\ge=xy+zx+yz\)

\(\Rightarrow xy+yz+zx\le=3\)

Dấu \(=\)xảy ra khi \(x=y=z=1\)