1.C/M: a2+5b2-(3a+b)\(\ge\)3ab-5
2. Tìm các nghiệm nguyên của pt: 2x2+3y2+4x=19
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chiều dài | Chiều rộng | Diện tích | |
Lúc đầu | x (m) | 30 - x (m) | x.(30 - x) (m2) |
Lúc sau | x - 2 (m) | 30 - x + 5 (m) | (x - 2)(30 - x + 5) (m2) |
Gọi x (m) là chiều dài hình chữ nhật (x>0)
Nửa chu vi hình chữ nhật là 60 : 2 = 30 (m)
Chiều rộng hình chữ nhật lúc đầu là 30 - x (m)
Chiều dài hình chữ nhật lúc sau là x - 2 (m)
Chiều rộng hình chữ nhật lúc sau là 30 - x + 5 (m)
Theo đề, nếu giảm chiều dài 2m và tăng chiều rộng 5m thì diện tích tăng 70cm2, ta có phương trình
x(30 - x) + 70 = (x - 2)(30 - x + 5)
<=> 30x - x2 + 70 = 30x - x2 + 5x - 60 + 2x - 10
<=> -x2 + x2 + 30x - 30x - 5x -2x = -70 - 60 - 10
<=> -7x = -140
<=> x = 20 (TMĐK)
Vậy chiều dài hình chữ nhật là 20 m
chiều rộng hình chữ nhật là 30 - 20 = 10 m
bạn có thể dùng máy tính để thử nghiệm . hoặc có thể dùng phương pháp tách
Bài b) (x-4)(x-7)(x-6)(x-5)=1680
=> (x2-11x+28)(x2-11x+30)=1680
Đặt t=x2-11x+28
=> t(t+2)=1680
=>t2+2t-1680=0
=> t2+2t+1-1681=0
=> (t+1)2-412=0
=> (t-40)(t+42)=0
=> t=40 hoặc t=-42
Bạn thế vào như câu a) để giải nhé !!!
mình sẽ giải câu 3 cho bạn nhé
đề bài=> \(\frac{1}{x^2+4x+5x+20}+\frac{1}{x^2+5x+6x+30}+\frac{1}{x^2+6x+7x+42}=\frac{1}{18}\)
\(\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-...-\frac{1}{x+7}=\frac{1}{18}\)
\(\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(18\left(x+7\right)-18\left(x+4\right)=\left(x+7\right)\left(x+4\right)\)
\(\left(x+13\right)\left(x-2\right)=0\)
\(\orbr{\begin{cases}x=-13\\x=2\end{cases}}\)
nhớ thank mk nhé
câu 5 nà
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=>\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=>\(3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\ge9\)
<=>\(3+2+2+2\ge9\)(bất đẳng thức luôn đúng)
=> điều phải chứng minh
a) \(\frac{2}{3}x>-6\)
=> \(x>\left(-6\right):\frac{2}{3}\)
=> \(x>-9\)
b) \(-\frac{5}{6}x< 20\)
=> \(x< 20:-\frac{5}{6}\)
=> \(x>-24\)
c) \(3-\frac{1}{4}x>2\)
=> \(\frac{1}{4}x< 3-2\)
=> \(\frac{1}{4}x< 1\)
=> \(x< 4\)
d) \(5-\frac{1}{3}x>3\)
=> \(\frac{1}{3}x< 5-3\)
=> \(\frac{1}{3}x< 2\)
=> \(x< 6\)
\(x^2+y^2\)
=\(\left(x+y+\sqrt{2xy}\right)\left(x+y-\sqrt{2xy}\right)\)
Bạn hỏi câu này rồi mà????
1. Ta có:
\(a^2+5b^2-\left(3a+b\right)\ge3ab-5\)
\(\Leftrightarrow2a^2+10b^2-6a-2b-6ab+10\ge0\)
\(\Leftrightarrow a^2-6ab+9b^2+a^2-6a+9+b^2-2b+1\ge0\)
\(\Leftrightarrow\left(a-3b\right)^2+\left(a-3\right)^2+\left(b-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=3\\b=1\end{cases}}\)
2. Giải:
Ta có: \(2x^2+3y^2+4x=19\)
\(\Leftrightarrow2x^2+4x+2=21-3y^2\)
\(\Leftrightarrow2\left(x+1\right)^2=3\left(7-y^2\right)\left(1\right)\)
Xét thấy \(VT⋮2\Leftrightarrow3\left(7-y^2\right)⋮2\Leftrightarrow y\) lẻ (2)
Mặt khác \(VT\ge0\Leftrightarrow3\left(7-y^2\right)\ge0\Leftrightarrow y^2\le7\) (3)
Kết hợp (2) và (3) suy ra:
\(y^2=1\) Thay vào \(\left(1\right)\) ta có:
\(2\left(x+1\right)^2=18\). Vậy ta tính được các nghiệm:
\(\left(x,y\right)=\left(2;1\right);\left(2;-1\right);\left(-4;-1\right);\left(-4;1\right)\)