Bài 4. Cho tam giác ABC. Gọi O là một điểm thuộc miền trong của tam giác, M,
N, P, Q lần lượt là trung điểm của các đoạn thẳng OB, OC, AC, AB.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Xác định vị trí của điểm O đế tứ giác MNPQ là hình chữ nhật.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{2}{x-3}+\frac{x-3}{x+3}-\frac{x-15}{9-x^2}\left(x\ne\pm3\right)\)
\(=\frac{2}{x-3}+\frac{x-3}{x+3}-\frac{x}{\left(3-x\right).\left(3+x\right)}\)
\(=\frac{2}{x-3}+\frac{x-3}{x+3}+\frac{x-15}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{2.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}+\frac{\left(x-3\right).\left(x-3\right)}{\left(x-3\right).\left(x+3\right)}+\frac{x-15}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{2x+6+\left(x-3\right)^2+x-15}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{2x+6+x^2-6x+9+x-15}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{x^2+\left(2x-6x+x\right)+\left(6+9-15\right)}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{x^2-3x}{\left(x-3\right).\left(x+3\right)}\)
\(=\frac{x}{x+3}\)
b) Thay vào ta được:
\(\frac{1}{2}:\left(\frac{1}{2}+3\right)=\frac{1}{7}\)
Vậy biểu thức \(A=\frac{1}{7}\) khi \(x=\frac{1}{2}\)
Ta có: 1(x−2)2−1x+2−14−x21(x−2)2−1x+2−14−x2
=x+2−(x−2)2+x−2(x−2)2⋅(x+2)=x+2−(x−2)2+x−2(x−2)2⋅(x+2)
=2x−x2+4x−4(x−2)2⋅(x+2)=2x−x2+4x−4(x−2)2⋅(x+2)
o giả thiết cho IJ không song song với CDvà chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.
Gọi K=IJ∩CDK=IJ∩CD.
Ta có : M là điểm chung thứ nhất của (ACD) và (IJM);
{K∈IJIJ⊂(MIJ)⇒K∈(MIJ){K∈IJIJ⊂(MIJ)⇒K∈(MIJ) và {K∈CDCD⊂(ACD)⇒K∈(ACD){K∈CDCD⊂(ACD)⇒K∈(ACD)
Vậy (MIJ)∩(ACD)=MK(MIJ)∩(ACD)=MK
Quảng cáo
b) Với L=JN∩ABL=JN∩AB ta có:
{L∈JNJN⊂(MNJ)⇒L∈(MNJ){L∈JNJN⊂(MNJ)⇒L∈(MNJ)
{L∈ABAB⊂(ABC)⇒L∈(ABC){L∈ABAB⊂(ABC)⇒L∈(ABC)
Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)
Gọi P=JL∩AD,Q=PM∩ACP=JL∩AD,Q=PM∩AC
Ta có:
{Q∈PMPM⊂(MNP)⇒Q∈(MNJ){Q∈PMPM⊂(MNP)⇒Q∈(MNJ)
Và {Q∈ACAC⊂(ABC)⇒Q∈(ABC){Q∈ACAC⊂(ABC)⇒Q∈(ABC)
Nên Q là điểm chung thứ hai của (MNJ) và (ABC)
Vậy LQ=(ABC)∩(MNJ)LQ=(ABC)∩(MNJ).
ko hiểu nhưng thôi k vậy >:(