CHo ram giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB ,qua C kẻ đường thẳng vuông góc với AC , chúng cắt nhau tại D . CM : AD là tia phân gíc góc A
( giúp mình vẽ hình vơi )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC ,có:
AB=AC
=> tam giác ABC cân tại A
=> góc ABC = góc ACB
vì A là trung điểm của BD (gt)
=> AB = AD
Mà AB = AC ( gt)
=> AD = AC
=> tam giác ACD là tam giác cân tại A
=> góc ACD = góc ADC
có góc BCD = góc ACB + góc ACD ( hệ thức cộng góc )
mà góc ABC = góc ACB(cmt) ; góc ADC = góc ACD (cmt)
=> góc BCD = góc ABC + góc ADC
=> đpcm
còn câu b mk chx nghĩ ra =.=///
hok tốt
Use the words given to complete each of the following sentences
1. Traffic jam/ one/ most common/ issue/ big city/ world//.
=> Traffic jam is one of the most common issues in big cities in the world
2. There/ many/ people/ use/ road/ and/ one/ main reason/ cause/ traffic jam//.
=> There are many people using roads and it is one of main reasons cause traffic jam
3. We/ solve/ traffic problem/ by/ encourage/ people/ use/ bicycle/ rather / car/ short trip//.
=> We can solve this traffic problem by encouraging people to use bicycles rather than cars in short trip
4. People/ use/ public transports/ reduce/ number/ private vehicles/ road//.
=> People should use public transports to reduce the number of private vehicles on the road
5. Move/ big/ company/ factory/ city/ countryside/ help reduce/ traffic jam//.
=> Moving big companies and factories from the city to the countryside will help reduce the traffic jam
Ta có: \(\frac{x}{y}=\frac{2}{3}\)
=> \(\frac{x}{2}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{y}{9}\)(1)
Có: \(\frac{x}{3}=\frac{z}{5}\)=> \(\frac{x}{6}=\frac{z}{10}\)(2)
Từ (1) ; (2) => \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)=> \(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x^2}{36}=\frac{1}{4}\\\frac{y^2}{81}=\frac{1}{4}\\\frac{z^2}{100}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=9\\y^2=\frac{81}{4}\\z^2=25\end{cases}}\)
Vì x, y, z dương nên suy ra: \(\hept{\begin{cases}x=3\\y=\frac{9}{2}\\z=5\end{cases}}\)
=> \(x+2y-2z=3+2.\frac{9}{2}-2.5=2\)
Ta có : \(\frac{x}{y}=\frac{2}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3};\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9};\frac{x}{6}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\)(k>0)
\(\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}}\)
Thay x=6k; y=9k; z=10k vào \(x^2+y^2+z^2=\frac{217}{4}\) ta có:
\(\left(6k\right)^2+\left(9k\right)^2+\left(10k^2\right)=\frac{217}{4}\)
\(\Rightarrow6^2.k^2+9^2.k^2+10^2.k^2=\frac{217}{4}\)
\(\Rightarrow k^2.\left(6^2+9^2+10^2\right)=\frac{217}{4}\)
\(\Rightarrow k^2.\left(36+81+100\right)=\frac{217}{4}\)
\(\Rightarrow k^2.217=\frac{217}{4}\)
\(\Rightarrow k^2=\frac{217}{4}.\frac{1}{217}=\frac{1}{4}\)
\(\Rightarrow k=\pm\frac{1}{2}\)
Mà k >0
\(\Rightarrow k=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}x=6.\frac{1}{2}=3\\y=9.\frac{1}{2}=\frac{9}{2}\\z=10.\frac{1}{2}=5\end{cases}}\)( thỏa mãn x;y dương)
\(\Rightarrow x+2y-2z=3+2.\frac{9}{2}-2.5=3+9-10=2\)
Vậy x+2y-2z=2
1.(chắc là) After use the laptop, you .... (đề bn sai hay sao ý useful là hữu ích k liên quan tới cả câu này)
Bạn tự vẽ hình nhé!
Vì \(\Delta ABC\)cân tại A
\(\Rightarrow AB=AC\)
Xét 2 tam giác vuông \(AEC\)và \(ADB\)có:
\(AB=AC\left(cmt\right)\)
\(\widehat{A}\)là góc chung
\(\Rightarrow\Delta AEC=\Delta ADB\left(ch-gn\right)\)
\(\Rightarrow AE=AD\)( 2 cạnh tương ứng )
Xét 2 tam giác vuông \(AEK\)và \(ADK\)có:
\(AE=AD\left(cmt\right)\)
\(AK\)là cạnh chung
\(\Rightarrow\Delta AEK=\Delta ADK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{EAK}=\widehat{DAK}\)( 2 góc tương ứng )
\(\Rightarrow AK\)là tia phân giác của góc A.
Trl
Ăn mặc chỉnh tề : to dress up
Ăn mặc giản dị: casual dress
Dịp lễ :special occasion
Học tốt
Ăn mặc chỉnh tề : trim
Ăn mặc giản dị : dress freaky
Dịp , lễ : holidays
A B C _ _ D
Ta có:
ABD=ABC+CBD
ACD=ACB+BCD
Mà ABD=ACD (=90o)
ABC=ACB (\(\Delta\)ABC cân)
\(\Rightarrow\)CBD=BCD
\(\Rightarrow\Delta\)BDC cân
Xét \(\Delta\)ABD và \(\Delta\) ACD có:
AB=AC (\(\Delta\)ABC cân)
AD: chung
BD=CD (\(\Delta\)BDC cân)
\(\Rightarrow\Delta\)ABD=\(\Delta\)ACD (c.c.c)
\(\Rightarrow\)BAD=CAD (2 góc tương ứng)
\(\Rightarrow\)AD là p/g BAC (đpcm)
Ta có tam giác ABC la tam giác cân tại A
=> AB = AC ( tính chất tam giác cân )
Xét tam giác ABD vuông tại B và tam giác ACD vuông tại C có :
AB = Ac ( cmt )
Ad là cah chung
=> tam giác ABD = tam giác ACD ( ch -cgv )
=> Góc A1 = góc A2 ( hai góc tương ứng )
=> AD là tia phân giác góc A