P = \(\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
rút gọn biểu thức P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải GIÚP MIK VS Ạ NHANH LÊN Ạ( hiếm khi đẳng câu hỏi chẳng có ai huóng dẫn, thật sự ******** quá vô dụng)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{x}{4}+\frac{1}{x}\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}=1$
$\frac{3}{4}x\geq \frac{3}{4}.2=\frac{3}{2}$ do $x\geq 2$
Cộng theo vế 2 BĐT trên thu được:
$A\geq 1+\frac{3}{2}=\frac{5}{2}$
Vậy GTNN của $A$ là $\frac{5}{2}$. Giá trị này đạt được tại $x=2$
Cho a,b,c là các số thực dương thỏa mãn a+b+c=6
Tìm GTNN của biểu thức A= a2/ a+b + b2/ c+a + c2/b+c
Lời giải:
Áp dụng BĐT Cauchy Schwarz:
$A=\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{b+c}\geq \frac{(a+b+c)^2}{a+b+c+a+b+c}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}\geq \frac{6}{2}=3$
Vậy $A_{\min}=3$. Giá trị này đạt tại $a=b=c=2$
1: Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
Xét tứ giác ADHM có \(\widehat{ADM}=\widehat{AHM}=90^0\)
nên ADHM là tứ giác nội tiếp
2: Xét (O) có
\(\widehat{CAD}\) là góc tạo bởi tiếp tuyến AC và dây cung AD
\(\widehat{AED}\) là góc nội tiếp chắn cung AD
Do đó: \(\widehat{CAD}=\widehat{AED}\)
Xét ΔCAD và ΔCEA có
\(\widehat{CAD}=\widehat{CEA}\)
\(\widehat{ACD}\) chung
Do đó: ΔCAD~ΔCEA
=>\(\dfrac{CA}{CE}=\dfrac{CD}{CA}\)
=>\(CA^2=CE\cdot CD\left(1\right)\)
Xét ΔCAO vuông tại A có AH là đường cao
nên \(CH\cdot CO=CA^2\left(2\right)\)
Từ (1),(2) suy ra \(CE\cdot CD=CH\cdot CO\)
Câu 5:
Gọi giá niêm yết của tivi là x(triệu đồng)
(Điều kiện: x>0)
Giá của tivi nếu mua ở cửa hàng A là:
\(x\cdot\left(1-15\%\right)-0,8=0,85x-0,8\)(triệu đồng)
Giá của tivi nếu mua ở cửa hàng B là:
\(x\left(1-20\%\right)=0,8x\left(triệuđồng\right)\)
Theo đề, ta có phương trình:
0,8x-(0,85x-0,8)=0,2
=>0,8-0,05x=0,2
=>0,05x=0,6
=>x=0,6:0,05=12(nhận)
vậy: Giá niêm yết của tivi là 12 triệu đồng
Câu 2:
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{2}=\dfrac{1}{2}\\x_1x_2=\dfrac{c}{a}=-\dfrac{7}{2}\end{matrix}\right.\)
\(Q=\left(x_1-x_2\right)^2-5x_1-5x_2\)
\(=\left(x_1+x_2\right)^2-4x_1x_2-5\left(x_1+x_2\right)\)
\(=\left(\dfrac{1}{2}\right)^2-4\cdot\dfrac{-7}{2}-5\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{4}+14-\dfrac{5}{2}=\dfrac{47}{4}\)
Câu 2:
1; Giải hệ phương trình:
\(\left\{{}\begin{matrix}x+y=7\\3x-2y=16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\3x=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\3.\left(7-y\right)=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\21-3y=16+2y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\2y+3y=21-16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\5y=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\y=5:5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-y\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=7-1\\y=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vậy (\(x;y\)) = (6; 1)
2; Đường thẳng y = (m - 3)\(x\) + 2m - 2 cắt đường thẳng y = 3\(x\) - 2
tại một điểm trên trục hoành nên y = 0
Ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\\3x-2=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\\3x=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(m-3\right)x+2m-2=0\left(1\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)
Thay \(x\) = \(\dfrac{2}{3}\) vào phương trình (1) ta có:
(m - 3)\(\dfrac{2}{3}\) + 2m - 2= 0
\(\dfrac{2}{3}\)m - 2 + 2m - 2 = 0
\(\dfrac{2}{3}\)m + 2m = 2 + 2
\(\dfrac{8}{3}\)m = 4
m = 4 : \(\dfrac{8}{3}\)
m = \(\dfrac{3}{2}\)
Kết luận với m = \(\dfrac{3}{2}\) thì phương trình đường thẳng y = (m - 3)\(x\) + 2m - 2 cắt đường thẳng y = 3\(x\) - 2 tại một điểm trên trục hoành.
x + 3y = 5
x + y = 3
=>2y = 5 - 3 = 2
=> y = 2 : 2 = 1
=> x = 3 - 1
Bài dưới em không biết, em mới lớp 4 thôi...
Bài 1:
\(\left\{{}\begin{matrix}x+3y=5\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+3y-x-y=5-3\\x+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=2\\y=3-x\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=3-1=2\end{matrix}\right.\)
Bài 2:
Phương trình hoành độ giao điểm là:
\(x^2=-x+2\)
=>\(x^2+x-2=0\)
=>(x+2)(x-1)=0
=>\(\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Thay x=-2 vào y=-x+2, ta được:
y=-(-2)+2=4
Thay x=1 vào y=-x+2, ta được:
y=-1+2=1
Vậy: (P) giao (d) tại A(-2;4); B(1;1)
\(P=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
\(=\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)
\(=2\sqrt{x}+1-\sqrt{x}-1+1\)
\(=\sqrt{x}+3\)
\(P=\dfrac{2x+\sqrt{x}}{\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
\(P=\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}+1\)
\(P=2\sqrt{x}+1-\sqrt{x}-1+1\)
\(P=\sqrt{x}+1\)