K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

a) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:

\(1,2\cdot x\cdot y=1,2xy\left(m^3\right)\) 

Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:

\(1,2\cdot5\cdot x\cdot5\cdot y=37,5xy\left(m^3\right)\)

b) Tổng số mét khối nước cần đổ vào 2 bể là:

\(1,2xy+37,5xy=38,7xy\left(m^3\right)\) 

Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m 

\(38,7\cdot4\cdot3=464,4\left(m^3\right)\)

8 tháng 11 2023

) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:

1,2⋅�⋅�=1,2��(�3)1,2xy=1,2xy(m3) 

Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:

1,2⋅5⋅�⋅5⋅�=37,5��(�3)1,25x5y=37,5xy(m3)

b) Tổng số mét khối nước cần đổ vào 2 bể là:

1,2��+37,5��=38,7��(�3)1,2xy+37,5xy=38,7xy(m3) 

Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m 

38,7⋅4⋅3=464,4(�3)38,743=464,4(m3)

19 tháng 10 2023

a) Số nhiệt của thành phố A là: 

\(I=-45+2\cdot40+10\cdot100-0,2\cdot40\cdot100-0,007\cdot40^2-0,05\cdot100^2+0,001\cdot40^2\cdot100+0,009\cdot40\cdot100^2-0,000002\cdot40^2\cdot100^2\)

\(I=-3345,2\)

b) Số nhiệt của thành phố B là:
\(I=-45+2\cdot50+10\cdot90-0,007\cdot50^2-0,05\cdot90^2+0,001\cdot50^2\cdot90+0,009\cdot50\cdot90^2-0,00000\cdot50^2\cdot90^2\)

\(I=-3780\)

26 tháng 10 2023

a) Số nhiệt của thành phố A là: 

�=−45+2⋅40+10⋅100−0,2⋅40⋅100−0,007⋅402−0,05⋅1002+0,001⋅402⋅100+0,009⋅40⋅1002−0,000002⋅402⋅1002I=45+240+101000,2401000,0074020,051002+0,001402100+0,0094010020,0000024021002

�=−3345,2I=3345,2

b) Số nhiệt của thành phố B là:
�=−45+2⋅50+10⋅90−0,007⋅502−0,05⋅902+0,001⋅502⋅90+0,009⋅50⋅902−0,00000⋅502⋅902I=45+250+10900,0075020,05902+0,00150290+0,009509020,00000502902

�=−3780I=3780

6 tháng 11 2023

a) ​Tứ giác ����ABCD là hình chữ nhật (GT)

Suy ra ��AD // ��IC (hai cạnh đối) nên tứ giác ����AICD là hình thang.

Mà ���^=90∘ADC=90 (góc của hình chữ nhật)

Do đó tứ giác ����AICD là hình thang vuông.

b) Tứ giác ����ABCD là hình chữ nhật nên ��AD // ��,��=��BC,AD=BC.

Mà IK lần lượt là trung điểm của ��BC��AD.

Suy ra ��AK // ��IC và ��=��AK=IC.

Tứ giác ����AICK có ��AK // ��IC và ��=��AK=IC nên tứ giác ����AICK là hình bình hành (dấu hiệu nhận biết).

c) Gọi O là giao điểm của ��AC và ��BD

Suy ra O là trung điểm của ��AC và ��BD (1) (tính chất đường chéo hình chữ nhật)

Tứ giác ����AICK là hình bình hành (chứng minh trên).

Suy ra ��AC cắt ��IK tại trung điểm của ��AC (2)

Từ (1) và (2) suy ra O là trung điểm của ��AC��IK và ��BD.

Hay ba đường thẳng ��AC��BD��IK cùng đi qua điểm O.

8 tháng 11 2023

​Tứ giác ����ABCD là hình chữ nhật (GT)

Suy ra ��AD // ��IC (hai cạnh đối) nên tứ giác ����AICD là hình thang.

Mà ���^=90∘ADC=90 (góc của hình chữ nhật)

Do đó tứ giác ����AICD là hình thang vuông.

b) Tứ giác ����ABCD là hình chữ nhật nên ��AD // ��,��=��BC,AD=BC.

Mà IK lần lượt là trung điểm của ��BC��AD.

Suy ra ��AK // ��IC và ��=��AK=IC.

Tứ giác ����AICK có ��AK // ��IC và ��=��AK=IC nên tứ giác ����AICK là hình bình hành (dấu hiệu nhận biết).

c) Gọi O là giao điểm của ��AC và ��BD

Suy ra O là trung điểm của ��AC và ��BD (1) (tính chất đường chéo hình chữ nhật)

Tứ giác ����AICK là hình bình hành (chứng minh trên).

Suy ra ��AC cắt ��IK tại trung điểm của ��AC (2)

Từ (1) và (2) suy ra O là trung điểm của ��AC��IK và ��BD.

Hay ba đường thẳng ��AC��BD��IK cùng đi qua điểm O.

 

 

19 tháng 10 2023

a) \(\left(x-2y\right)\left(3xy+6x^2+x\right)\)

\(=x\left(3xy+6x^2+x\right)-2y\left(3xy+6x^2+x\right)\)

\(=3x^2y+6x^3+x^2-6xy^2-12x^2y-2xy\)

\(=6x^3+x^2-9x^2y-6xy^2-2xy\)

b) \(\left(18x^4y^3-24x^3y^4+12x^3y^3\right):\left(-6x^2y^3\right)\)

\(=18x^4y^3:\left(-6x^2y^3\right)-24x^3y^4:\left(-6x^2y^3\right)+12x^3y^3:\left(-6x^2y^3\right)\)

\(=-3x^2+4xy-2x\)

26 tháng 10 2023

a) (�−2�)(3��+6�2+�)(x2y)(3xy+6x2+x)

=�(3��+6�2+�)−2�(3��+6�2+�)=x(3xy+6x2+x)2y(3xy+6x2+x)

=3�2�+6�3+�2−6��2−12�2�−2��=3x2y+6x3+x26xy212x2y2xy

=6�3+�2−9�2�−6��2−2��=6x3+x29x2y6xy22xy

b) (18�4�3−24�3�4+12�3�3):(−6�2�3)(18x4y324x3y4+12x3y3):(6x2y3)

=18�4�3:(−6�2�3)−24�3�4:(−6�2�3)+12�3�3:(−6�2�3)=18x4y3:(6x2y3)24x3y4:(6x2y3)+12x3y3:(6x2y3)

=−3�2+4��−2�=3x2+4xy2x

19 tháng 10 2023

Bài 1:

a) Đa thức P có bậc 3, các hạng tử của đa thức P là \(2x^2y;-3x;8y^2;-1\)

b) Thay \(x=-1;y=\dfrac{1}{2}\) vào đa thức P, ta được:

\(P=2\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot\left(-1\right)+8\cdot\left(\dfrac{1}{2}\right)^2-1\)

\(P=1+3+2-1\)

\(P=5\)

Bài 2:

\(P+Q=5xy^2-3x^2+2y-1-xy^2+9x^2y-2y+6\)

\(P+Q=4xy^2-3x^2+5+9x^2y\)

\(P-Q=5xy^2-3x^2+2y-1+xy^2-9x^2y+2y-6\)

\(P-Q=-9x^2y+6xy^2-3x^2+4y-7\)

19 tháng 10 2023

Bài 1:

a) Bậc của đa thức P là: \(2+1=3\) 

Các hạng tử của P là: \(2x^2y,-3x,8y^2,-1\)

b) Thay \(x=-1;y=\dfrac{1}{2}\) vào P ta có:

\(P=2\cdot\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot-1+8\cdot\left(\dfrac{1}{2}\right)^2-1\)

\(P=2\cdot1\cdot\dfrac{1}{2}+3+8\cdot\dfrac{1}{4}-1\)

\(P=1+3+2-1\)

\(P=5\)

18 tháng 10 2023

a) \(\left(3x-2\right)^2-\left(2x+3\right)\left(2x-3\right)\)

\(=9x^2-12x+4-4x^2+9\)

\(=5x^2-12x+13\)

b) \(3x\left(5x-2\right)-\left(2x^2-1\right)\left(2-x\right)\)

\(=15x^2-6x-\left(4x^2-2x^3-2+x\right)\)

\(=15x^2-6x-4x^2+2x^3+2-x\)

\(=11x^2-7x+2x^3+2\)

18 tháng 10 2023

a) Xét tứ giác ANMK có:

\(\left\{{}\begin{matrix}\widehat{A}=90^o\\\widehat{N}=90^o\\\widehat{K}=90^o\end{matrix}\right.\)

=> ANMK là hình chữ nhật

b) Ta có:

\(\widehat{MCA}=\widehat{MAC}=\widehat{NAK}\) mà 2 góc có vị trí đồng vị

=> NK//MC

Mặt khác: MN//KC

=> NMCK là hình bình hành

Ta có: O là trung điểm MK

=> O là trung điểm NC

=> ON=OC

c) 

Vì tứ giác ANMK là hình chữ nhật

=> NM=AK

  tứ giác NMCK là hình bình hành

=> NM=KC

=> \(MN=\dfrac{1}{2}AC\)

\(\Rightarrow EM=AC\)

mà EM//AC

=> AEMC là hình bình hành

Gọi I là trung điểm AM

=> I là trung điểm EC

Vì ANMK là h.c.n

=> I là trung điểm NK

=> AM, NK, EC đồng quy tại I

11 tháng 6 2024

s

18 tháng 10 2023

loading... a) Do HD // AC

⇒ HD // AE

Do HE // AB

⇒ HE // AD

Tứ giác ADHE có:

HD // AC

HE // AD

⇒ ADHE là hình bình hành

18 tháng 10 2023

Các câu còn lại em ghi đề cho chính xác lại

17 tháng 10 2023

Ta có:

\(x+y=1\Rightarrow3xy=3xy\left(x+y\right)\)

\(x^3+3xy+y^3\)

\(=x^3+3xy\left(x+y\right)+y^3\)

\(=\left(x+y\right)^3=1\)