phân tích đa thức thành nhân tử
9x2-(x-y2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(n^2-4n+29=\left(n^2-4n+4\right)+25=\left(n-2\right)^2+25\)
Để \(n^2-4n+29⋮5\Rightarrow\left(n-2\right)^2⋮5\)
Do 5 là số nguyên tố nên \(\left(n-2\right)⋮5\Rightarrow n=2k+5\left(k\in Z\right)\)
b) \(n^2+2n+6=\left(n+4\right)\left(n-2\right)+14\)
Vậy để \(\left(n^2+2n+6\right)⋮\left(n+4\right)\Rightarrow14⋮\left(n+4\right)\)
\(\Rightarrow n+4\inƯ\left(14\right)=\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-18;-11;-6;-5;-3;-2;3;10\right\}\)
c) Ta thấy:
\(n^{200}+n^{100}+1=\left(n^4+n^2+1\right)\left(n^{196}-n^{194}+n^{190}-n^{188}+...+n^4-n^2\right)+n^2+2\)
Để \(n^{200}+n^{100}+1⋮\left(n^4+n^2+1\right)\Rightarrow\left(n^2+2\right)⋮\left(n^4+n^2+1\right)\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
Ta sử dụng đồng nhất thức:
\(\left(x^2-1\right)\left(x^2-Ax+B\right)=x^4-Ax^3+Bx^2-x^2+Ax-B\)
\(=x^4-Ax^3+\left(B-1\right)x^2+Ax-B\)
Vậy nên \(A=-1;B=1\)
cau 1 \(x^2+6xy+9y^2=\left(x+3y\right)^2\)( binh phuong cua mot tong)
\(x^2-10xy+25y^2=\left(x-5y\right)^2\)( binh phuong cua mot hieu )
bn tính ra đc bt thức \(ax\left(x-y\right)+y^3\left(x+y\right)=ax^2-axy+xy^3+y^4\)
Thay x=-1 và y=1 b=vào biểu thức vừa tính đc, ta có:
\(a\times\left(-1\right)^2-a\times\left(-1\right)1+\left(-1\right)\times1^3+1^4=2a\)
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiễn nhiên biểu thức:
a2002 + b2002 = c2002 + d2002 đúng. (II)
Nếu ac =>bd
=>a-c=d-b0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)
Kết luận: với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiễn nhiên biểu thức:
a2002 + b2002 = c2002 + d2002 đúng. (II)
Nếu ac =>bd
=>a-c=d-b0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)
Suy ra với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.
https://olm.vn/hoi-dap/question/1038454.html
Mình vừa làm cách đây 11 phút nhé !
Ta có : a2010 + b2010 + c2010 = a1005b1005 + b1005c1005 + c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 = 2a1005b1005 + 2b1005c1005 + 2c1005a1005
<=> 2a2010 + 2b2010 + 2c2010 - 2a1005b1005 - 2b1005c1005 - 2c1005a1005 = 0
<=> (a2010 - 2a1005b1005 + b2010) + (b2010 - 2b1005c1005 + c2010) + (c2010 - 2c1005a1005 + a2010) = 0
<=> (a1005 - b1005)2 + (b1005 - c1005)2 + (c1005 - a1005 )2 = 0
=> a1005 - b1005 = b1005 - c1005 = c1005 - a1005 = 0
=> a = b = c
Vậy (a - b)20 + (b - c)11 + (c - a)2010 = (a - a)20 + (a - a)11 + (a - a)2010 = 0 + 0 + 0 = 0 .
a) \(x^2\)\(+\)\(6x\)\(+\)\(9\)
\(=\left(x+3\right)^2\)
b) \(x^3\)\(+\)\(3x^2\)\(+\)\(3x\)\(+\)\(1\)
\(=\left(x+1\right)^3\)
c) \(8x^3\)\(-\)\(\frac{1}{8}\)
\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)
d) \(10x\)\(-\)\(25\)\(-\)\(x^2\)
\(=\)\(-x^2\)\(+\)\(10\)\(-\)\(25\)
\(=-\left(x^2-10+25\right)\)
\(=-\left(x-5\right)^2\)
e) \(\frac{1}{25}x^2\)\(-\)\(64y^2\)
=\(\left(\frac{1}{25}x-8y\right)\left(\frac{1}{5}x+8y\right)\)
Đề bài có đúng không bạn???