A= 1/2.6 +1/3.8 +1/4.10 +....+1/2023.4048
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(-\dfrac{3}{7}-x=-\dfrac{1}{2}\\ x=-\dfrac{3}{7}-\left(-\dfrac{1}{2}\right)\\ x=\dfrac{-3}{7}+\dfrac{1}{2}=\dfrac{-6}{14}+\dfrac{7}{14}=\dfrac{1}{14}\)
b) \(x-\dfrac{4}{5}=\dfrac{1}{2}-\dfrac{1}{3}\\ x-\dfrac{4}{5}=\dfrac{3}{6}-\dfrac{2}{6}=\dfrac{1}{6}\\ x=\dfrac{1}{6}+\dfrac{4}{5}=\dfrac{5}{30}+\dfrac{24}{30}\\ x=\dfrac{29}{30}\)
c) \(-x-\dfrac{3}{4}=-\dfrac{8}{11}\\ -x=-\dfrac{8}{11}+\dfrac{3}{4}\\ -x=-\dfrac{32}{44}+\dfrac{33}{44}=\dfrac{1}{44}\\ x=-\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\\ \dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\\ x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}\\ x=\dfrac{55}{60}-\dfrac{24}{60}-\dfrac{40}{60}\\ x=-\dfrac{9}{60}\)
a) \(\dfrac{-3}{7}-x=\dfrac{-1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}-\dfrac{3}{7}\)
\(\Rightarrow x=\dfrac{1}{14}\)
Vậy \(x=\dfrac{1}{14}\)
b) \(x-\dfrac{4}{5}=\dfrac{1}{2}-\dfrac{1}{3}\)
\(\Rightarrow x-\dfrac{4}{5}=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{1}{6}+\dfrac{4}{5}\)
\(\Rightarrow x=\dfrac{29}{30}\)
Vậy \(x=\dfrac{29}{30}\)
c) \(-x-\dfrac{3}{4}=\dfrac{-8}{11}\)
\(\Rightarrow-x=\dfrac{3}{4}-\dfrac{8}{11}\)
\(\Rightarrow-x=\dfrac{1}{44}\)
\(\Rightarrow x-\dfrac{1}{44}\)
Vậy \(x=-\dfrac{1}{44}\)
d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)
\(\Rightarrow\dfrac{2}{5}+x=\dfrac{1}{4}\)
\(\Rightarrow x=\dfrac{1}{4}-\dfrac{2}{5}\)
\(\Rightarrow x=\dfrac{-3}{20}\)
Vậy \(x=\dfrac{-3}{20}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\left(\dfrac{-4}{5}+\dfrac{3}{7}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\right)\\ =\dfrac{-4}{5}+\dfrac{2}{7}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\\ =\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)+\left(\dfrac{2}{7}+\dfrac{2}{7}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)\\ =-1+\dfrac{4}{7}+0=-\dfrac{3}{7}\)
\(b.\left(7-\dfrac{3}{4}+\dfrac{1}{3}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\\ =7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\\ =\left(7-6-5\right)+\left(\dfrac{7}{4}-\dfrac{3}{4}-\dfrac{5}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\\=1+\dfrac{-1}{4}+0=\dfrac{3}{4}\)
a)
\(\left(-\dfrac{4}{5}+\dfrac{3}{7}-\dfrac{1}{2}\right)+\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{2}{7}\right)\\ =\left(-\dfrac{4}{5}-\dfrac{1}{5}\right)+\left(\dfrac{3}{7}+\dfrac{2}{7}\right)+\left(-\dfrac{1}{2}+\dfrac{1}{2}\right)\\ =-\dfrac{5}{5}+\dfrac{5}{7}+0\\ =-1+\dfrac{5}{7}\\ =-\dfrac{2}{7}\)
b)
\(\left(7-\dfrac{3}{4}+\dfrac{1}{2}\right)-\left(6+\dfrac{5}{4}-\dfrac{4}{3}\right)-\left(5-\dfrac{7}{4}+\dfrac{5}{3}\right)\\ =7-\dfrac{3}{4}+\dfrac{1}{3}-6-\dfrac{5}{4}+\dfrac{4}{3}-5+\dfrac{7}{4}-\dfrac{5}{3}\\ =\left(7-6-5\right)+\left(-\dfrac{3}{4}-\dfrac{5}{4}+\dfrac{7}{4}\right)+\left(\dfrac{1}{3}+\dfrac{4}{3}-\dfrac{5}{3}\right)\\ =\left(-4\right)+\left(\dfrac{-1}{4}\right)+0\\ =-\dfrac{17}{4}\)
c)
\(\left(0,25+\dfrac{7}{9}-\dfrac{1}{7}\right)-\left(0,75-\dfrac{2}{9}-\dfrac{1}{7}\right)\\ =0,25+\dfrac{7}{9}-\dfrac{1}{7}-0,75+\dfrac{2}{9}+\dfrac{1}{7}\\ =\left(0,25-0,75\right)+\left(\dfrac{7}{9}+\dfrac{2}{9}\right)+\left(-\dfrac{1}{7}+\dfrac{1}{7}\right)\\ =-\dfrac{1}{2}+\dfrac{9}{9}+0\\ =-\dfrac{1}{2}+1\\ =\dfrac{1}{2}\)
d)
\(\dfrac{\dfrac{2}{7}+\dfrac{1}{3}-\dfrac{2}{9}}{\dfrac{3}{7}+\dfrac{1}{2}-\dfrac{1}{3}}\\ =\dfrac{\dfrac{2}{7}+\dfrac{2}{6}-\dfrac{2}{9}}{\dfrac{3}{7}+\dfrac{3}{6}-\dfrac{3}{9}}\\ =\dfrac{2\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{9}\right)}{3\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{9}\right)}\\ =\dfrac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{-3}{21}+\dfrac{-2}{7}+\dfrac{1}{3}=\dfrac{-3}{21}+\dfrac{-6}{21}+\dfrac{7}{21}=-\dfrac{2}{21}\)
b) \(\dfrac{-13}{15}+\dfrac{5}{-18}+\dfrac{4}{9}=\dfrac{-78}{90}+\dfrac{-25}{90}+\dfrac{40}{90}=\dfrac{63}{90}=\dfrac{7}{10}\)
c) \(\dfrac{-2}{5}-\left(\dfrac{-3}{11}\right)=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d) \(\left(-4\right)-\left(\dfrac{-4}{5}\right)-\dfrac{2}{3}=\left(-4\right)+\dfrac{4}{5}-\dfrac{2}{3}=\dfrac{-60}{15}+\dfrac{12}{15}-\dfrac{10}{15}=\dfrac{-58}{15}\)
e) \(\dfrac{3}{5}+\left(\dfrac{-4}{3}\right)-\dfrac{-3}{4}=\dfrac{3}{5}+\left(\dfrac{-4}{3}\right)+\dfrac{3}{4}=\dfrac{36}{60}+\dfrac{-80}{60}+\dfrac{45}{60}=\dfrac{1}{60}\)
g) \(\dfrac{5}{8}-\left(-\dfrac{2}{5}\right)-\dfrac{3}{10}=\dfrac{5}{8}+\dfrac{2}{5}-\dfrac{3}{10}=\dfrac{25}{40}+\dfrac{16}{40}-\dfrac{12}{40}=\dfrac{29}{40}\)
h) \(\dfrac{3}{4}-\left(-\dfrac{5}{3}\right)+\left(\dfrac{1}{12}+\dfrac{2}{9}\right)=\dfrac{3}{4}+\dfrac{5}{3}+\left(\dfrac{3}{36}+\dfrac{8}{36}\right)=\dfrac{27}{36}+\dfrac{60}{36}+\dfrac{11}{36}=\dfrac{98}{36}=\dfrac{49}{18}\)
a) \(\dfrac{-3}{21}+\dfrac{-2}{7}+\dfrac{1}{3}=\dfrac{-3}{21}-\dfrac{6}{21}+\dfrac{7}{21}\\ =\dfrac{-3-6+7}{21}=-\dfrac{2}{21}\)
b) \(\dfrac{-13}{15}+\dfrac{5}{-18}+\dfrac{4}{9}=\dfrac{-78}{90}-\dfrac{25}{90}+\dfrac{40}{90}\\ =\dfrac{-78-25+40}{90}=\dfrac{-63}{90}=-\dfrac{7}{10}\)
c) \(\dfrac{-2}{5}-\left(\dfrac{-3}{11}\right)=-\dfrac{2}{5}+\dfrac{3}{11}\\ =-\dfrac{22}{55}+\dfrac{15}{55}=-\dfrac{7}{55}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Trên tia Ox, ta có: OA<OB
nên A nằm giữa O và B
=>OA+AB=OB
=>AB+4=6
=>AB=2(cm)
b: C là trung điểm của OA
=>\(CO=CA=\dfrac{OA}{2}=2\left(cm\right)\)
Vì AO và AB là hai tia đối nhau
nên AC và AB là hai tia đối nhau
=>A nằm giữa hai điểm B và C
Ta có: A nằm giữa B và C
mà AB=AC(=2cm)
nên A là trung điểm của BC
d: Các góc đỉnh D trong hình vẽ là: \(\widehat{ODC};\widehat{ODA};\widehat{ODB};\widehat{CDA};\widehat{CDB};\widehat{ADB}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Trên tia Ox, ta có: OA<OB
nên A nằm giữa O và B
=>OA+AB=OB
=>AB+3=5
=>AB=2(cm)
b: Vì OC và OA là hai tia đối nhau
nên O nằm giữa C và A
Ta có: O nằm giữa C và A
mà OC=OA(=3cm)
nên O là trung điểm của AC
c: TH1: I nằm giữa O và B
=>OI+IB=OB
=>IB+4=5
=>IB=1(cm)
TH2: I nằm trên tia đối của tia OA
I nằm trên tia đối của tia OA
nên I nằm trên tia đối của tia OB
=>O nằm giữa I và B
=>IB=IO+OB=4+5=9(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Gọi số chia là $a$. Vì số chia luôn lớn hơn số dư nên $a>29$.
Theo bài ra thì: $65a+29< 1980$
$\Rightarrow 65a< 1951$
$\Rightarrow a< 30,02$
Mà $a>29$ nên $a=30$
Vậy số chia là $30$
![](https://rs.olm.vn/images/avt/0.png?1311)
Số số hạng trong dãy số 100;98;...;2 là:
\(\dfrac{100-2}{2}+1=\dfrac{98}{2}+1=50\left(số\right)\)
Tổng của dãy số 100;98;...;2 là:
\(\left(100+2\right)\cdot\dfrac{50}{2}=102\cdot25=2550\)
100+98+...+2+97-95-93
=2550+2-93
=2552-93
=2459
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{4046\cdot4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{4046}-\dfrac{1}{4048}\)
\(=\dfrac{1}{4}-\dfrac{1}{4048}=\dfrac{1012-1}{4048}=\dfrac{1011}{4048}\)
\(A=\dfrac{1}{2\cdot6}+\dfrac{1}{3\cdot8}+\dfrac{1}{4\cdot10}+...+\dfrac{1}{2023\cdot4048}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2023\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1012-1}{2024}\)
\(=\dfrac{1011}{4048}\)