K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Để f(x) chia het cho g(x) thi

f(x)=g(x).Q(x)

hay ax3 + bx2 + 10x -4 = (x2+2x-x-2).Q(x)

                                      =(x+2)(x-1).Q(x) (1)

Nếu x=1 thi (1) <=>a+b+6=0

                       <=> a+b=-6(2)

Nếu x=-2 thi (1)<=>-8a+4b-20-4=0

                          <=> -8a+4b=24

                         <=> -2a+b=6(3)

Từ (2) va (3) => a=-4,b=-2

17 tháng 11 2017

chịu??? tớ chưa học đến?

10 tháng 4 2019

Ê,

Why?

bạn ý cũng đưa câu hỏi lên thui mà 

17 tháng 11 2017

Ta có :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z.\)

\(\Leftrightarrow\frac{x+y+z}{y+z+1+x+z+1+x+y-2}=\frac{x+y+z}{2y+2z+2x}=\frac{x+y+z}{1}\)

\(\Leftrightarrow2x+2y+2z=1\)

\(\Leftrightarrow2.\left(x+y+z\right)=1\)

\(\Leftrightarrow x+y+z=\frac{1}{2}\)

.........

17 tháng 11 2017

thành bò ơi chào bố chưa

17 tháng 11 2017

Có : (a-b)^2>=0

<=> a^2+b^2-2ab >=0

<=>a^2+b^2 >= 2ab

<=>a^2+b^2+2ab >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b >0 thì chia cả 2 vế cho (a+b).ab thì :

a+b/ab >= 4/a+b

<=>4/a+b <= 1/a+1/b

<=> 1/a+b <= 1/4.(1/a+1/b)         ( với mọi a,b > 0 )

Áp dụng bđt trên cho x;y;z > 0 thì : x/2x+y+z = x. 1/(x+y)+(z+x) <= x/4 .( 1/x+y+1/x+z) = x/4.(x+y) + x/4.(x+z)

Tương tự : y/x+2y+z <= y/4.(y+x) + y/4.(y+z)

z/x+y+2z <= z/4.(z+x) + z/4.(z+y)

=> VT <= [ x/4.(x+y) + y/4.(y+x) ] + [ y/4.(y+z) + z/4.(z+y) ] + [ z/4.(z+x) + x/4.(x+z) ] = 1/4 + 1/4 + 1/4 = 3/4

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z > 0 

k mk nha

áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với mọi a,b >0 

Thì \(\frac{x}{x+y}+\frac{x}{x+z}\ge\frac{4x}{2x+y+z}\) 

Tương tự thì đpcm 

Cách này nhanh này thành đơ

14 tháng 11 2017

Áp dụng bất đẳng thức bu nhi a ta có

\(\left(a+2b\right)^2\le\left(1+2\right)\left(a^2+2b^2\right)=3.\left(a^2+2b^2\right)\le3.3c^2=9c^2\)

=> \(a+2b\le3c\)

Mà \(\frac{1}{a}+\frac{2}{b}=\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\ge\frac{9}{a+2b}\ge\frac{9}{3c}=\frac{3}{c}\)

=> \(\frac{1}{a}+\frac{2}{b}\ge\frac{3}{c}\left(ĐPCM\right)\)

24 tháng 11 2019

bạn tl rất hay

cảm ơn bn

14 tháng 11 2017

Ta có : \(a+b+c=3.\)

\(\Rightarrow\hept{\begin{cases}b+c=3-a\\a+c=3-b\\a+b=3-c\end{cases}}\)

Thay vào ta có : \(\frac{3+a^2}{3-a}+\frac{3+b^2}{3-b}+\frac{3+c^2}{3-c}\)

................................

Tự làm tiếp nha 

15 tháng 11 2017

Ta có:

\(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Rightarrow M\le\sqrt{2}-1\)

15 tháng 11 2017

Ta có :

   \(2M=\frac{2ab}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-\left(a^2+b^2\right)}{a+b+2}\)

\(=\frac{\left(a+b\right)^2-4}{a+b+2}\)

\(\Leftrightarrow a+b-2\le\sqrt{2\left(a^2+b^2\right)}-2\)

\(=2\sqrt{2}-2\)

\(\Leftrightarrow M\le\sqrt{2}-1\)

13 tháng 11 2017

 = -x^2 + 2x + 4x^2 - 32x = 2x^2 - 30x

k mk nha