K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)

\(=x^2-2^2-\left(x^2+x-3x-3\right)\)

\(=x^2-4-x^2-x+3x+3\)

\(=2x-1\)

b) \(\left(2x+1\right)^2+\left(3x-1\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left[\left(2x+1\right)+\left(3x-1\right)\right]^2\)

\(=\left(2x+1+3x-1\right)^2\)

\(=\left(5x\right)^2=25x^2\)

Có bài nào khó nữa hỏi mình nha Đạt :v

26 tháng 11 2017

Mình sai chỗ nào bạn nói đi

vậy bạn Dương Hải Đăng sửa chỗ sai của mình được không

Nếu bạn sửa được thì mình sẽ tiếp nhận lỗi sai mà nếu không sửa được thì cậu quấy rối diễn đàn 

27 tháng 11 2017

Theo định lý Pi-ta-go, ta có \(BC^2=AB^2+AC^2\)

Vậy nên theo bài ra ta có \(AB^2+AC^2=4AB.AC\)

\(\Rightarrow AB^2-4AB.AC+AC^2=0\)

\(\Rightarrow\left(\frac{AB}{AC}\right)^2-4.\frac{AB}{AC}+1=0\)

Đặt \(\frac{AB}{AC}=k\Rightarrow k^2-4k+1=0\Rightarrow\orbr{\begin{cases}k=2+\sqrt{3}\\k=2-\sqrt{3}\end{cases}}\)

Do AB < AC nên \(\frac{AB}{AC}< 1\), vậy ta lấy \(k=2-\sqrt{3}\)

Với \(k=2-\sqrt{3}\Rightarrow tan\widehat{ACB}=2-\sqrt{3}\Rightarrow\widehat{ACB}=15^o\Rightarrow\widehat{ABC}=75^o\)

27 tháng 11 2017

Cô Huyền giúp em rõ hơn được không, em lớp 8 chưa học \("\tan"\)

Ta có: (x-3)2-(x+3)2=0

<=> (x-3-x-3)(x-3+x+3)=0

<=>-6.2x=0

<=>-12x=0

=>x=0

P/s tham khảo nha bạn đức

25 tháng 11 2017

(x - 3)2 - (x + 3)2 = 0

\(\Leftrightarrow\)(x - 3 - x - 3)(x - 3 + x + 3) = 0

\(\Leftrightarrow\)-6. 2x = 0

\(\Leftrightarrow\)x = 0

Vậy x = 0

25 tháng 11 2017

(x - 3)4 - (x + 3)4 = 0

\(\Leftrightarrow\)[(x -3)2 - (x + 3)2 ]. [(x - 3)2 + (x + 3)2 ] =  0

\(\Leftrightarrow\)(x - 3 - x - 3)(x - 3 + x + 3)[(x - 3)2 + (x + 3)2 ] = 0

\(\Leftrightarrow\)-12x [(x - 3)2 + (x + 3)2 ] = 0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2+\left(x+3\right)^2=0\end{cases}}\)

Xét: (x - 3)2 + (x + 3)2 = 0

Ta thấy \(\hept{\begin{cases}\left(x-3^2\right)\ge0\\\left(x+3\right)^2\ge0\end{cases}}\)\(\Leftrightarrow\)(x - 3)2 + (x + 3)2 \(\ge\)0

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\x=-3\end{cases}}\)vô lý

Vậy x = 0

25 tháng 11 2017

\(=\left(x-3+x+3\right)\left(x-3-x-3\right)=2x\left(-6\right)\)

\(=-12x\)

24 tháng 11 2017

Bất đẳng thức Bunyakovsky – Wikipedia tiếng Việt

24 tháng 11 2017

At the speed of light

Bất đẳng thức Bunyakovsky dạng thông thường

  • (a² + b²)(c² + d²) ≥ (ac + bd)²
  • Chứng minh: (a² + b²)(c² + d²) ≥ (ac + bd)² ↔ (ac)² + (ad)² + (bc)² + (bd)² ≥ (ac)² + 2abcd + (bd)² ↔ (ad)² + (bc)² ≥ 2abcd ↔ (ad)² - 2abcd + (bc)² ≥ 0 ↔ (ad - bc)² ≥ 0
  • Dấu " = " xảy ra khi {\displaystyle {\frac {a}{c}}={\frac {b}{d}}}{\displaystyle {\frac {a}{c}}={\frac {b}{d}}}

Bất đẳng thức Bunyakovsky cho 2 bộ số

  • Với hai bộ số {\displaystyle (a_{1};a_{2};...;a_{n})}{\displaystyle (a_{1};a_{2};...;a_{n})} và {\displaystyle (b_{1};b_{2};...;b_{n})}{\displaystyle (b_{1};b_{2};...;b_{n})} ta có:

{\displaystyle \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2}\right)\geq \left(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}\right)^{2}}{\displaystyle \left(a_{1}^{2}+a_{2}^{2}+...+a_{n}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+...+b_{n}^{2}\right)\geq \left(a_{1}b_{1}+a_{2}b_{2}+...+a_{n}b_{n}\right)^{2}}

  • Dấu "=" xảy ra khi và chỉ khi {\displaystyle {\frac {a_{1}}{b_{1}}}={\frac {a_{2}}{b_{2}}}=...={\frac {a_{n}}{b_{n}}}}{\displaystyle {\frac {a_{1}}{b_{1}}}={\frac {a_{2}}{b_{2}}}=...={\frac {a_{n}}{b_{n}}}} với quy ước nếu một số {\displaystyle b_{i}}{\displaystyle b_{i}} nào đó (i = 1, 2, 3,..., n) bằng 0 thì {\displaystyle a_{i}}{\displaystyle a_{i}}tương ứng bằng 0.
  • Hệ quả của bất đẳng thức Bunyakovsky ta có: {\displaystyle \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\geq \left(4abcd\right)}{\displaystyle \left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\geq \left(4abcd\right)}

ngoài ra có thể hiểu hơn ở Hiểu rõ hơn về bất đẳng thức Bunhiacopxki - Toán cấp 3

23 tháng 11 2017

(x − 1)+ 6(x − 1) − 2=0

Tôi chỉ giải được thếy này thôi, đến đây tôi nghĩ bạn cũng đã hiểu.