cho tam giác ABC vuông tại A lấy M thuộc B. kẻ ME vuông góc với AB, ME vuông góc với AC
a/ chứng minh AEHF là hình chữ nhật
b/ kẻ AH vuông góc với BC, chứng minh HE vuông góc với HF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt A=\(\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2013}{x^2}\)\(=\)\(1-2\frac{1}{x}+2013\frac{1}{x^2}\)
đặt \(\frac{1}{x}=a\)\(=>\)\(\frac{1}{x^2}=a^2\)
khi đó \(A=2013a^2-2a+1\)
\(=>\)\(2013A=\left(2013a\right)^2-4026a+2013\)
\(=\left(2013a-1\right)^2+2012\)
bạn tự giải tiếp nhé :))
a/
\(ME\perp AB;AC\perp AB\) => ME//AC
\(MF\perp AC;AB\perp AC\) => MF//AB
=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh
Mà \(\widehat{BAC}=90^o\)
=> AEMF là HCN (Hình bình hành có 1 góc vuông là HCN)
b/
Ta có E; F; H cùng nhìn AM dưới một góc vuông => E; F; H cùng nằm trên đường tròn đường kính AM tâm là trung điểm AM
Mà AM=EF (Trong HCN hai đường chéo bằng nhau) => EF cũng là đường kính của đường tròn đường kính AM
\(\Rightarrow\widehat{EHF}=90^o\Rightarrow HE\perp HF\) (góc nội tiếp chắn nửa đường tròn)