K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 9 2021

a. Điều kiện xác định: \(x^2-4\ne0\Leftrightarrow x\ne\pm2\)

b. ta có :\(\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}=A\)

c.\(\left|x\right|=3\Leftrightarrow\orbr{\begin{cases}x=3\Rightarrow A=\frac{3-2}{3+2}=\frac{1}{5}\\x=-3\Rightarrow A=\frac{-3-2}{-3+2}=5\end{cases}}\)

2 tháng 9 2021

a, ĐKXĐ:x240x±2ĐKXĐ:x2−4≠0⇒x≠±2

b,Đặt  A=x24x+4x24A=x2−4x+4x2−4

=(x2)2(x2)(x+2)=x2x+2=(x−2)2(x−2)(x+2)=x−2x+2

c, |x|=3\orbr{x=3x=3|x|=3⇒\orbr{x=3x=−3 (thỏa mãn ĐKXĐ)

Với x = 3 thì A=323+2=15A=3−23+2=15

Với x = -3 thì A=323+2=5A=−3−2−3+2=5

d, A<2x2x+2<2x2<2x+424<2xxx

 
NM
2 tháng 9 2021

a. \(A=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)=\left(\frac{x-1}{2\sqrt{x}}\right).\left(\frac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{x-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right).\left(\frac{-4x}{x-1}\right)=-2\sqrt{x}\)

Để \(A>-6\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow0\le x< 9\)

NM
2 tháng 9 2021

để \(y=\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}=1\)

thì \(\left(\sqrt{3}-\sqrt{5}\right)x=1-\sqrt{5}-\sqrt{3}\)

\(\Leftrightarrow x=\frac{1-\sqrt{3}-\sqrt{5}}{\sqrt{3}-\sqrt{5}}\)

b.\(f^2\left(x\right)=\left[\left(\sqrt{3}-\sqrt{5}\right)x+\sqrt{5}+\sqrt{3}\right]^2=8+2\sqrt{15}=\left(\sqrt{5}+\sqrt{3}\right)^2\)

\(\Leftrightarrow\left[\left(\sqrt{3}-\sqrt{5}\right)x+2\sqrt{5}+2\sqrt{3}\right]\left(\sqrt{3}-\sqrt{5}\right)x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2\left(\sqrt{3}+\sqrt{5}\right)x}{\left(\sqrt{3}-\sqrt{5}\right)x}\end{cases}}\)

1 tháng 9 2021

a, Thay x = 36 vào B ta được : \(B=\frac{6}{6-3}=\frac{6}{3}=2\)

b, \(B< \frac{1}{2}\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{1}{2}< 0\Leftrightarrow\frac{\sqrt{x}+3}{2\left(\sqrt{x}-3\right)}< 0\)Với \(x>0;x\ne9\)

\(\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\Rightarrow0< x< 9\)

c, Với \(x>0;x\ne1\)

\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(=\left(\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}+2}=\frac{\sqrt{x}+2}{\sqrt{x}}\)

d, \(P=AB=\frac{\sqrt{x}+2}{\sqrt{x}-3}=\frac{\sqrt{x}-3+5}{\sqrt{x}-3}=1+\frac{5}{\sqrt{x}-3}\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\sqrt{x}-3\)1-15-5
x16464loại
1 tháng 9 2021

Để y = 0 thì \(\left(3-2\sqrt{2}\right)x+\sqrt{2}-1=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)^2\cdot x+\left(\sqrt{2}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)\left[\left(\sqrt{2}-1\right)x+1\right]=0\)

\(\Leftrightarrow\left(\sqrt{2}-1\right)x+1=0\Leftrightarrow x=-\frac{1}{\sqrt{2}-1}=-1-\sqrt{2}\)

NM
1 tháng 9 2021

hàm số trên đồng biến vì hệ số của x là 

\(3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2>0\)

1 tháng 9 2021

Cách đơn giản : Xét hệ số góc \(3-2\sqrt{2}\)ta có \(9>8\Rightarrow3>2\sqrt{2}\Leftrightarrow3-2\sqrt{2}>0\)

Vậy hàm số trên đồng biến 

Cách không đơn giản : Xét \(y=f\left(x\right)=\left(3-2\sqrt{2}\right)x+\sqrt{2}-1\)

Hàm số trên xác định với mọi x . Lấy các giá trị x1 , x2 sao cho x1 < x2

Ta có : \(f\left(x_1\right)-f\left(x_2\right)=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left[\left(3-2\sqrt{2}\right)x_2+\sqrt{2}-1\right]\)

\(=\left(3-2\sqrt{2}\right)x_1+\sqrt{2}-1-\left(3-2\sqrt{2}\right)x_2-\sqrt{2}+1\)

\(=\left(3-2\sqrt{2}\right)\left(x_1-x_2\right)< 0\)( vì x1 < x2 )

=> f(x1) < f(x2) . Vậy hàm số đã cho đồng biến

1 tháng 9 2021

dùng công thức : căn của (x1-x2)^2 + (y1-y2)^2 là ra khoảng cách giữa 2 điểm, tìm 3 khoảng cách rồi suy ra tam giác đều

1 tháng 9 2021

ĐK : x >= 0 , x khác 9

\(Q=\frac{\sqrt{x}-1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+2}{\sqrt{x}-3}=1+\frac{2}{\sqrt{x}-3}\)

Để \(Q\inℤ\Rightarrow\frac{2}{\sqrt{x}-3}\inℤ\Leftrightarrow\sqrt{x}-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

đến đây bạn tự làm tiếp heng :p