Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2x=\dfrac{y}{3}=\dfrac{z}{5}\)
=>\(\dfrac{x}{0,5}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà \(\dfrac{x+y-z}{2}=-20\)
nên \(\dfrac{x}{0,5}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y-z}{0,5+3-5}=\dfrac{-40}{-1,5}=\dfrac{40}{1,5}\)
=>\(x=\dfrac{20}{1,5}=\dfrac{40}{3};y=\dfrac{40}{1,5}\cdot3=80;z=40\cdot\dfrac{5}{1,5}=40\cdot\dfrac{10}{3}=\dfrac{400}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\widehat{ABE}=\dfrac{\widehat{ABC}}{2}\)
\(\widehat{ACF}=\dfrac{\widehat{ACB}}{2}\)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABE}=\widehat{ACF}\)
Xét ΔABE và ΔACF có
\(\widehat{ABE}=\widehat{ACF}\)
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
=>BE=CF
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
b: Sửa đề: Chứng minh AC=AE
Ta có: CE//AI
=>\(\widehat{AEC}=\widehat{BAI};\widehat{CAI}=\widehat{ACE}\)
mà \(\widehat{BAI}=\widehat{CAI}\)(ΔABI=ΔACI)
nên \(\widehat{AEC}=\widehat{ACE}\)
=>AC=AE
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4m\right)\)
\(=4\left(m^2-2m+1\right)+16m\)
\(=4m^2+8m+4=\left(2m+2\right)^2>=0\forall m\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>(2m+2)^2>0
=>\(2m+2\ne0\)
=>\(2m\ne-2\)
=>\(m\ne-1\)
Theo vi-et, ta có:
\(x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right);x_2x_1=-4m\)
\(\left|x_1-x_2\right|=2022\)
=>\(\sqrt{\left(x_1-x_2\right)^2}=2022\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2022\)
=>\(\sqrt{\left(2m-2\right)^2-4\cdot\left(-4m\right)}=2022\)
=>\(\sqrt{\left(2m+2\right)^2}=2022\)
=>\(\left|2m+2\right|=2022\)
=>|m+1|=1011
=>\(\left[{}\begin{matrix}m+1=1011\\m+1=-1011\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1010\left(nhận\right)\\m=-1012\left(nhận\right)\end{matrix}\right.\)