K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

Mượn chỗ nhok chút !

ta có pt 

<=>\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2-x+1\right)+2\left(x+1\right)\)

đặt \(\sqrt{x+1}=a;\sqrt{x^2-x+1}=b\) 

Ta có PT <=> \(5ab=2a^2+2b^2\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

đến đây thì dex rồi ^_^

31 tháng 12 2017

Mượn chỗ nhok chút !

Áp dụng bđt svacxơ, ta có 

\(M\ge\frac{\left(x^3+y^3+z^3\right)^2}{2\left(x^3+y^3+z^3\right)}=\frac{x^3+y^3+z^3}{2}\)

Áp dụng bài toán \(a^2+b^2+c^2\ge ab+bc+ca\) (dễ dàng chứng minh ) , ta có 

\(x^3+y^3+z^3\ge xy\sqrt{xy}+yz\sqrt{yz}+zx\sqrt{zx}=1\)

=> \(M\ge\frac{1}{2}\)

dấu = xảy ra <=> x=y=z=\(\frac{1}{\sqrt[3]{3}}\)

31 tháng 12 2017

ta có \(\left(x-y\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)cái này các bạn tự CM

         \(\left(1-xy\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)

      \(\Rightarrow\left(x-y\right)^2\left(1-xy\right)^2\le\left(1+x^2\right)^2\left(1+y^2\right)^2\)

      \(\Rightarrow\left[\left(x-y\right)\left(1-xy\right)\right]\le\left[\left(1+x^2\right)\left(1+y^2\right)\right]\)cái dấu ngặc vuông là chỉ dấu giá trị tuyệt đối đấy mình ko biết đánh dấu giá trị tuyệt đối

       \(\Rightarrow\left[\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\right]\le1\)

       \(\Rightarrow-1\le\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\le1\)\(\Rightarrow-1\le A\le1\)

31 tháng 12 2017

có z đâu b

30 tháng 12 2017

Ta có: 

\(3\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)

 =   \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2b+b^2c+c^2a\right)\)\(=a^3+ab^2+ac^2+a^2b+b^3+bc^2+ca^2+b^2c+c^3\)\(-3\left(a^2b+b^2c+c^2a\right)\)

\(=a^3+b^3+c^3+ab^2+bc^2+ca^2-2a^2b-2b^2c-2c^2a\)

\(=\left(a^3-2a^2b+ab^2\right)+\left(b^3-2b^2c+bc^2\right)+\left(c^3-2c^2a+ca^2\right)\)

\(=a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\)

Mà \(a,b,c>0\)

\(\Rightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\)

\(\Rightarrow\)\(3\left(a^2+b^2+c^2\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

Lại có: 

\(\left(a^2+b^2+c^2\right)^2+3\left(a^2+b^2+c^2\right)\ge6\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b+b^2c+c^2a\right)\)<đpcm>

30 tháng 12 2017

bài trên mk làm sai rồi, mong mọi người thông cảm và nghĩ cách khác nha

30 tháng 12 2017

\(BDT\Leftrightarrow\frac{a+3c}{a+b}-2+\frac{a+3b}{a+c}-2+\frac{2a}{b+c}-1\ge0\)

\(\Leftrightarrow\frac{c-a}{a+b}+\frac{2\left(c-b\right)}{a+b}+\frac{b-a}{a+c}+\frac{2\left(b-c\right)}{a+c}+\frac{a-b}{b+c}+\frac{a-c}{b+c}\ge0\)

\(\Leftrightarrow\left(c-a\right)^2\frac{1}{\left(a+b\right)\left(b+c\right)}+2\left(b-c\right)^2\frac{1}{\left(a+c\right)\left(a+b\right)}+\left(a-b\right)^2\frac{1}{\left(a+c\right)\left(b+c\right)}\ge0\)

BĐT cuối đúng nên ta có ĐPCM

Xảy ra khi \(a=b=c\)

31 tháng 12 2017

Tại t nháp luôn vào chỗ để gửi trả lời nên khi gửi ko nhìn lại nó hơi tắt. Hết dòng thứ 2, bắt đầu dòng thứ 3:

\(\Leftrightarrow\left(\frac{c-a}{a+b}+\frac{a-c}{b+c}\right)+\left(\frac{2\left(b-c\right)}{a+c}+\frac{2\left(c-b\right)}{a+b}\right)+\left(\frac{a-b}{b+c}+\frac{b-a}{a+c}\right)\ge0\)

\(\Leftrightarrow\left(c-a\right)\left(\frac{1}{a+b}-\frac{1}{b+c}\right)+2\left(b-c\right)\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+\left(a-b\right)\left(\frac{1}{b+c}-\frac{1}{a+c}\right)\ge0\)

\(\Leftrightarrow....\)  the last ineq in here ! 

30 tháng 12 2017

x^4 - 8x + 63 
= (x^4 - 8x^2+16) + (5x^2 -20x +20) + (3x^2+12x +12) +15 
= (x^2-4)^2 + 5.(x-2)^2 + 3.(x+2)^2 +15 
= (x-2)^2.((x+2)^2+5) + 3.((x+2)^2+5) 
= ((x-2)^2 +3).((x+2)^2 +5) 
= (x^2-4x +7).(x^2 +4x +9) 

30 tháng 12 2017

đề bài có sai ko vậy bạn

30 tháng 12 2017

A = x( x^7 + 1 ) + 1 

30 tháng 12 2017

x8 + x4 + 1. = ( x8+ 2x4 +1 ) - x4. = (x4 + 1)2 - x4. = ( x4 - x2 + 1)(x4+x2 +1). =( x4 - x2 + 1)(x4+2x2 -x2+1). = ( x4 - x2 + 1)[( x2+1)2-x2]. =( x4 - x2 + 1)(x2+1-x2)(x2+1+x2). =( x4 - x2 + 1).2x2.

30 tháng 12 2017

bài 113 nâng cao và các chuyên đề toán 8 đại số (Vũ  Dương Thụy -Nguyễn Ngọc Đạm)

31 tháng 12 2017

a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)

mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)

=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)

b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1 

( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ  nhỉ !!

c)t nghĩ áp dụng câu b 

^_^