Bài 1: cho a,b,c khác đôi một\({1 \over a} + {1 \over b} + {1 \over c}= 0\)
Rút gọn các biểu thức
\(M = {1 \over a^2+2bc} + {1 \over b^2+2ac} + {1 \over c^2+2ab}\)
\(N = {bc \over a^2+2bc}+ {ca \over b^2+2ac} + {ab \over c^2+2ab}\)
Bài 2: Cho \({x \over a} + {y \over b} + {z \over c}=0 \) và \({a \over x} + {b \over y} + {c \over z}= 2\)
Chứng Minh Rằng \({a^2 \over x^2} + {b^2 \over y^2} + {c^2 \over z}= 4 \)