cho bảng số liệu sau:
t(s) 0 15 20 25 30 40 50
s(m) 0 75 100 125 125 135 145
a,Vẽ đồ thị quãng đường-thời gian của cđ?
b.mô tả chuyển động của vật?
c,tính quãng đường vật đi được trong 10s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa đề: Chứng minh m // n
Do m ⊥ BC (gt)
n ⊥ BC (gt)
⇒ m // n
b) Do m // n (cmt)
⇒ ∠D₂ = ∠A₁ = 65⁰
⇒ ∠D₄ = ∠D₂ = 65⁰ (đối đỉnh)
Ta có:
∠D₃ + ∠D₂ = 180⁰ (kề bù)
⇒ ∠D₃ = 180⁰ - ∠D₂
= 180⁰ - 65⁰
= 115⁰
Cách viết \(x\cdot\left(3,2-1,2\right)\) hay \(x\cdot\left[3.2+\left(-1,2\right)\right]\) đều đúng nhé bạn. Vì có dấu + trước ngoặc nên ta giữ nguyên dấu bên trong và được \(3,2-1,2\).
Cách viết �⋅(3,2−1,2)x⋅(3,2−1,2) hay �⋅[3.2+(−1,2)]x⋅[3.2+(−1,2)] đều đúng nhé bạn. Vì có dấu + trước ngoặc nên ta giữ nguyên dấu bên trong và được 3,2−1,23,2−1,2.
Bài này áp dụng BĐT B.C.S là ra nhé
Ta có \(VT=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{b+c+a}=a+b+c=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)
(*) BĐT B.C.S phát biểu như sau:
Cho \(2n\) số thực \(a_1,a_2,...,a_n,x_1,x_2,...,x_n\), trong đó \(a_i>0,\forall i\in\left\{1,2,...,n\right\}\). Khi đó ta có:
\(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\) (*)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}\)
Trước tiên, ta chứng minh (*) đúng với \(n=2\). Thật vậy:
Với \(x,y\inℝ;a,b>0\), thì ta cần chứng minh
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\dfrac{bx^2+ay^2}{ab}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(bx^2+ay^2\right)\ge ab\left(x+y\right)^2\)
\(\Leftrightarrow abx^2+a^2y^2+b^2x^2+aby^2\ge abx^2+aby^2+2abxy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
Để chứng minh với \(n\ge3\) thì bạn chỉ cần dùng nhiều lần BĐT cho 2 phân thức là được.
VD: \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y\right)^2}{a+b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy BĐT được chứng minh.
Sửa lại đề chỗ kia là \(\dfrac{b}{a}\) chứ không phải \(\dfrac{b}{b}\) nhé.
Đặt \(\dfrac{a}{b}=t>0\) . Khi đó BĐT cần chứng minh tương đương:
\(t^2+\dfrac{1}{t^2}\ge t+\dfrac{1}{t}\)
\(\Leftrightarrow t^2+\dfrac{1}{t^2}+2\ge t+\dfrac{1}{t}+2\)
\(\Leftrightarrow\left(t+\dfrac{1}{t}\right)^2\ge t+\dfrac{1}{t}+2\) (*)
Đặt \(u=t+\dfrac{1}{t}\left(u\ge2\right)\), khi đó (*) tương đương:
\(u^2-u-2\ge0\)
\(\Leftrightarrow u^2+u-2u-2\ge0\)
\(\Leftrightarrow u\left(u+1\right)-2\left(u+1\right)\ge0\)
\(\Leftrightarrow\left(u+1\right)\left(u-2\right)\ge0\) (luôn đúng vì \(u\ge2\))
Dấu "=" xảy ra \(\Leftrightarrow u=2\) \(\Leftrightarrow t+\dfrac{1}{t}=2\) \(\Leftrightarrow t=1\) \(\Leftrightarrow a=b\)
Vậy ta có đpcm.
Nãy mình nhìn nhầm đề, xin lỗi bạn nhiều. Cách trình bày vẫn như vậy nhé.
Lời giải:
Vì tỉ số chiều dài và chiều rộng là $\frac{3}{7}$ nên gọi chiều dài là $a$ (m) thì chiều rộng là $\frac{3}{7}\times a$ (m)
Diện tích: $a.\frac{3}{7}a=84$
$\Rightarrow a^2=196=14^2$
$\Rightarrow a=14$ (m)
Vậy chiều dài là 14 m, chiều rộng là $14.\frac{3}{7}=6$ (m)
Độ dài hàng rào bao quanh mảnh đất chính bằng chu vi mảnh đất và bằng:
$2(14+6)=40$ (m)
Lời giải:
Chu vi đáy lăng trụ: $6+7+9=22$ (cm)
Diện tích xung quanh lăng trụ: $22.13=286$ (cm2)
a) = (\(-\dfrac{141}{20}\)- \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{15}\) - \(\dfrac{1}{15}\)
= \(-\dfrac{73}{10}\) : - 5
= \(\dfrac{73}{50}\)
b) = \(\left(\dfrac{3}{25}-\dfrac{28}{25}\right)\). \(\dfrac{7}{3}\) : \(\left(\dfrac{7}{2}-\dfrac{11}{3}.14\right)\)
= \(-\dfrac{7}{3}\) . \(-\dfrac{6}{287}\)
= \(\dfrac{2}{41}\)
Hạ \(AH\perp BC\) tại H. Đặt \(MB=MC=x;HM=y;AH=h\)
Theo định lý Pythagoras: \(\left\{{}\begin{matrix}AH^2+HM^2=AM^2\\AH^2+BH^2=AB^2\\AH^2+CH^2=AC^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+\left(x-y\right)^2=36\\h^2+\left(x+y\right)^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}h^2+y^2=16\\h^2+x^2+y^2-2xy=36\\h^2+x^2+y^2+2xy=100\end{matrix}\right.\)
Cộng theo vế của 2 pt thứ 2 và thứ 3 của hệ này, ta được:
\(2\left(h^2+x^2+y^2\right)=136\)
\(\Leftrightarrow x^2+\left(h^2+y^2\right)=68\)
\(\Leftrightarrow x^2+16=68\)
\(\Leftrightarrow x^2=52\) hay \(BM^2=52\)
Mà ta lại có \(AB^2+AM^2=6^2+4^2=52\)
\(\Rightarrow AB^2+AM^2=BM^2\) \(\Rightarrow\Delta ABM\) vuông tại A \(\Rightarrow\) đpcm
Gọi H là điểm đối xứng với A qua M
Xét tam giác AMB và tam giác HMC có:
\(\left\{{}\begin{matrix}HM=AM\\\widehat{AMB}=\widehat{HMC}\\MB=MC\end{matrix}\right.\)
\(\Rightarrow\Delta AMB=\Delta HMC\left(c.g.c\right)\)
\(\Rightarrow HC=AB=6cm\)
Xét tam giác HAC có:
\(AH^2+HC^2=10^2\left(8^2+6^2=10^2\right)\)
\(\Rightarrow\widehat{AHC}=90^o\)
Mà \(\Delta AMB=\Delta HMC\)
\(\Rightarrow\widehat{MAB}=\widehat{MHC}=90^o\left(đpcm\right)\)
giúp mình đi,mình cần gấp