1.Cho a,b,c là 3 số dương. Chứng minh :
a) \(\frac{a+1}{b+2c+3}+\frac{b+1}{c+2a+3}+\frac{c+1}{a+2b+3}\ge1\)
b) \(\sqrt{\frac{a}{7a^2+4}}+\sqrt{\frac{a}{7b^2+4}}+\sqrt{\frac{a}{7c^2+4}}\le27\left(\frac{1}{42a+29}+\frac{1}{42b+29}+\frac{1}{42c+29}\right)\)
c) \(c^2-a^2-b^2\le4\left(ĐK:2\le c\le3;\frac{b}{2}+\frac{3}{c}\ge2;a+\frac{b}{2}+\frac{c}{3}\ge3\right)\)
2. Chứng minh :
a) \(2x+\sqrt{12-2x^2}\le6\left(ĐK:6-x^2\ge0\right)\)
b) \(\sqrt{1-2y-y^2}\le y+3\left(ĐK:1-2y-y^2\ge0\right)\)
c) \(\sqrt{5-x^2}+\sqrt{5-\frac{1}{x^2}}+x+\frac{1}{x}\ge6\left(ĐK:5-x^2\ge0;5-\frac{1}{x^2}\ge0\right)\)
Tịnh tách các bài ra nhé.