cho góc nhọn xOy. Trên tia Ox, đặt đoạn AB, trên tia Oy đặt đoạn CD (A nằm giữa O và B, C nằm giữa O và D) sao cho AB=CD. Cắt đường trung trực của AC và BD ở M. Chứng minh rằng góc OAM=góc OCM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C D D D M M M 1 1 2 1 2
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
\(|2019+x|-|x-2019|=0\)
<=> \(|2019+x|=|x-2019|\)
TH1: 2019 + x = x - 2019
x - x = 2019 + 2019
0 = 4038
Th2: 2019 + x = -x + 2019
x + x = 2019 - 2019
2x =0
x = 0
Vậy x = 0
Gọi số tờ tiền mà ba bạn Hoa ; Mai ; Minh nhận được lần lượt là a ; b ; c \(\left(a;b;c\inℕ^∗\right)\)
Theo bài ra ta có : a + b + c = 40 ;
\(2000a=5000b=10000c\Leftrightarrow2a=5b=10c\)(2)
Từ (2) => \(\hept{\begin{cases}2a=5b\\5b=10c\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{5}=\frac{b}{2}\\b=2c\end{cases}\Rightarrow}\hept{\begin{cases}\frac{a}{5}=\frac{b}{2}\\\frac{b}{2}=\frac{c}{1}\end{cases}}\Rightarrow\frac{a}{5}}=\frac{b}{2}=\frac{c}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{5}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{5+2+1}=\frac{40}{8}=5\)
\(\Rightarrow\hept{\begin{cases}a=25\\b=10\\c=5\end{cases}}\)(tm)
Vậy giải thưởng mà ba bạn Hoa ; Mai ; Minh nhận được gồm số tờ tiền lần lượt là 25; 10 ; 5
a) (Nếu cj biết vẽ hình rồi thì thôi nha chị, còn nếu chị chưa vẽ được hình thì chị có thể nhắn tin với em ạ )
Ta có : tam giác ABE và tam giác ADC có :
AB = AD
AC=AE
góc DAC = góc BAE ( cũng = góc BAC t60 độ )
=> tam giác ABE = tam giác ADC ( c . g . c )
=> góc AEB = góc ACD ( 2 góc tương ứng) ; BE = CD
Gọi F là tia đối tia BI sao cho DI=IF
=> tam giác DIF đều do góc DIB = 60 độ
Xét tam giác DBF và tam giác DAI có :
DF = DI , DB = DA , góc FDB = góc IDA = 60 độ - góc BDI
Vậy ta có : ID = IF = IB + FB = IB + IA ( đpcm )
b) Ta có : AM2 = \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
Áp dụng định lí cosin trong tam giác ABM ta có :
AM2 =BA2 + BM2 -2.BA . BM .cos B
= AB2 + BM2 -2.AB . BM . \(\frac{AB^2+BC^2-AC^2}{2.AB.BC}\)
= AB2 + \(\frac{BC^2}{4}-2.BM.\frac{AB^2+BC^2-AC^2}{2.2.BM}\)
= \(\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}\)
<=> AB2 + AC2 =2.AM2 + \(\frac{BC^2}{2}\)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Đây là bài toán tổng hiệu,đã có tổng của cả P(x) và Q(x) nên\(P\left(x\right)=\frac{x^2+1+2x}{2}=\frac{\left(x^2+x\right)+\left(x+1\right)}{2}=\frac{\left(x+1\right)^2}{2}\)
\(Q\left(x\right)=P\left(x\right)-2x=\frac{\left(x+1\right)^2}{2}-2x=\frac{x^2+2x+1-4x}{2}=\frac{x^2-2x+1}{2}=\frac{\left(x-1\right)^2}{2}\)
Nếu bn hỏi x^2-2x+1 sao lại =(x-1)^2 thì ph giống như (x+1)^2 nhé.
Lại sai đề." cắt đường trung trực của AC và BD ở M " là cái gì???. Phải là M là giao điểm hai đường trung trực của AC và BD
_________________________
Giải:
O A B M C D
M thuộc đường trung trực của BD => MB = MD
M thuộc đường trung trực của AB => MA = MC
Xét \(\Delta\)ABM và \(\Delta\)CDM có: AB = CD ; MA = MC ; MB = MD
=> \(\Delta\)ABM = \(\Delta\)CDM ( c-c-c)
=> ^BAM = ^DCM
mà ^BAM + ^MAO = ^DCM + MCO (= 180 độ )
=> ^MAO = ^MCO
thông cảm cho, dạo này già rùi mắt mũi lờ mờ ko thấy chữ @.@