bài 1 cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh AC. trên tia đối của tia MB lấy điểmD sao cho MB=MD
a , chứng minh tam giác ABM=tam giác CDM
b,chứng minh góc MCD = 90 độ. từ đó chứng minh AC vuông góc với CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như là không nhé bạn hoặc còn là tuỳ vào trường nữa nhưng thường là không
Lời giải:
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$\widehat{BAM}=\widehat{CAM}$ (do $AM$ là tia phân giác $\widehat{A}$)
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)
$\Rightarrow BM=CM$
a) Xét ∆ABM và ∆CDM có:
AM = CM (gt)
AMB = CMD (đối đỉnh)
BM = DM (gt)
⇒ ∆ABM = ∆CDM (c-g-c)
b) Do ∆ABM = ∆CDM (cmt)
⇒ MAB = MCD (hai góc tương ứng)
⇒ MCD = 90⁰
⇒ MC ⊥ CD
⇒ AC ⊥ CD