Cho tam giác ABC đều có đường cao AH. Trên tIa HC lấy điểm D sao cho HD=HA. Trên nữa mặt phẳng bờ BD không chứa A vẽ tia Dx sao cho góc BDx=15 độ và Dx cắt AB tại E. Chứng minh HD=HE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{\left(-3\right)^7\cdot2^8}{6^7}\)
\(=\dfrac{-1\cdot3^7\cdot2^8}{\left(2\cdot3\right)^7}=\dfrac{-1\cdot3^7\cdot2^7\cdot2}{2^7\cdot3^7}=-1\cdot2=-2\)
b) \(\dfrac{-3\cdot7^4+7^3}{7^5\cdot6-7^3\cdot2}\)
\(=\dfrac{-3\cdot7\cdot7^3+7^3}{7^3\cdot7^2\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\left(-3\cdot7+1\right)}{7^3\left(7^2\cdot6-2\right)}=\dfrac{-3\cdot7+1}{7^2\cdot6-2}\)
\(=\dfrac{-21+1}{294-2}=\dfrac{-20}{290}=\dfrac{-2}{29}\)
b) \(\dfrac{5^3\cdot3^5}{5^3\cdot0,5+125\cdot2\cdot5}\)
\(=\dfrac{5^3\cdot3^5}{5^3\cdot0,5+5^3\cdot2\cdot5}=\dfrac{5^3\cdot3^5}{5^3\left(0,5+2\cdot5\right)}\)
\(=\dfrac{3^5}{0,5+2\cdot5}=\dfrac{243}{10,5}=\dfrac{162}{7}\)
a)
`(2x-1)(x+2/3)=0`
\(< =>\left[{}\begin{matrix}2x-1=0\\x+\dfrac{2}{3}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b)
\(\dfrac{x+4}{2019}+\dfrac{x+3}{2020}=\dfrac{x+2}{2021}+\dfrac{x+1}{2022}\)
\(< =>\dfrac{x+4}{2019}+1+\dfrac{x+3}{2020}+1=\dfrac{x+2}{2021}+1+\dfrac{x+1}{2022}+1\)
\(< =>\dfrac{x+2023}{2019}+\dfrac{x+2023}{2020}=\dfrac{x+2023}{2021}+\dfrac{x+2023}{2022}\)
\(< =>\left(x+2023\right)\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\right)=0\)
\(< =>x+2023=0\left(\dfrac{1}{2019}+\dfrac{1}{2020}-\dfrac{1}{2021}-\dfrac{1}{2022}\ne0\right)\\ < =>x=-2023\)
`3/7 x -2/3 x =10/21`
`=> (3/7-2/3)x=10/21`
`=> ( 9/21 - 14/21)x=10/21`
`=>-5/21 x=10/21`
`=> x=10/21 : (-5/21)`
`=> x=10/21 xx (-21/5)`
`=>x=-2`
(3/7 - 2/3).x = 10/21
-5/21.x = 10/21
x = 10/21 : (-5/21)
x = -2
vậy x = -2
Gọi chiều dài là x, rộng là y ( x > y > 0)
Theo bài ra ta có : \(\dfrac{x}{\dfrac{1}{5}}\) = \(\dfrac{y}{\dfrac{1}{8}}\) ⇒ 5x = 8y ⇒ \(\dfrac{x}{8}\) = \(\dfrac{y}{5}\)
⇒ \(\dfrac{x^2}{64}\)= \(\dfrac{x.y}{8.5}\)= \(\dfrac{360}{40}\) = 9⇒ \(\) \(x\)2 = 64.9 = 242 ⇒ x = 24; x= -24 (loại)
y = 360 : 24 = 15
Vậy chiều dài là 24m, rộng 15m
`(x-1)/(x+5) = 6/7` ĐKXĐ : `x-5≠0<=>x≠5`
`<=> (7(x-1))/(7(x+5)) = (6(x+5))/(7(x+5))`
`=> 7(x-1)=6(x+5)`
`<=>7x-7=6x+30`
`<=>7x-6x=30+7`
`<=>x= 37 (TM)`
\(6\left(x+5\right)=7\left(x-1\right)\)
\(6x+30=7x-7\)
\(-x=-37\)
\(x=37\)
\(2x+3y-14=186\)
\(\Rightarrow2x+3y=186+14=200\)
Từ \(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{18}\) suy ra \(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{18}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{z}{18}=\dfrac{2x+3y}{30+60}=\dfrac{20}{9}\)
\(\Rightarrow x=15\cdot\dfrac{20}{9}=\dfrac{100}{3}\)
\(\Rightarrow y=20\cdot\dfrac{20}{9}=\dfrac{400}{9}\)
\(z=18\cdot\dfrac{20}{9}=40\)
2x + 3y - 14 = 186 => 2x + 3y = 186 + 14 = 200
\(\dfrac{x}{15}\) = \(\dfrac{y}{20}\) = \(\dfrac{z}{18}\) ⇒ \(\dfrac{2x}{30}\) = \(\dfrac{3y}{60}\) = \(\dfrac{2x+3y}{30+60}\) = \(\dfrac{200}{90}\) = \(\dfrac{20}{9}\)
=> x = \(\dfrac{20}{9}\) x 30 : 2 = \(\dfrac{100}{3}\); y = \(\dfrac{20}{9}\) x 60 : 3 = \(\dfrac{400}{9}\)
z = \(\dfrac{100}{3}\) : 15 x 18 = 40
Vậy (x, y, z) =( \(\dfrac{100}{3}\); \(\dfrac{400}{9}\); 40)