Cho tứ giác ABCD, AD=AB=BC<CD; hai đường chéo cắt nhau tại O, AD giao BC tại M. Vẽ hình bình hành AMBK. KO giao BC tại N. Chứng minh AM = BN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D O H E
Lấy giao điểm của AE với BD là H. Vẽ O là giao điểm của 2 đường chéo AC và BD.
Có ngay O là trung điểm AC (Theo t/c hình bình hành)
Thấy A và E đối xứng trục qua BD; AE cắt BD ở H
Nên ta có: H là trung điểm AE và AE vuông góc BD tại H.
Trong \(\Delta\)AEC có: H là trung điểm của AE; O là trung điểm của AC (cmt)
=> OH là đường trung bình \(\Delta\)AEC
=> OH // EC hay BD // EC => Tứ giác ECBD là hình thang (1)
Dễ thấy: \(\Delta\)ADE cân ở D có đường cao DH => DH cũng là phân giác ^ADE
=> ^ADH = ^EDH hay ^ADB = ^EDB. Mà ^ADB = ^CBD => ^CBD = ^EDB (2)
Từ (1) và (2) => Tứ giác ECBD là hình thang cân (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lấy E làm điểm đối xứng với A qua BD
=> KA = KE
và AE vuông góc với BK .
Vì ABCD là hình bình hành (GT)
\(\Rightarrow AB=DC\) (1)
( Tính chất của hình bình hành)
Mặt khác ta có :
\(\hept{\begin{cases}KA=KE\left(cmt\right)\\BK\perp AE\end{cases}}\)
\(\Rightarrow\Delta ABE\)cân
( Tính chất đường cao , đường trung tuyến trong 1 tam giác)
Vì tam giác ABE cân
\(\Rightarrow AB=BE\) (2)
Từ (1) và (2)
\(\hept{\begin{cases}AB=DC\\AB=BE\end{cases}}\)
\(\Rightarrow DC=BE\)
=> ECBD là hình thang cân
( vì hình thang coa hai đường chéo bằng nhau là hình thang cân)
A B C D O M K N
Tứ giác AMBK là hình bình hành => AM // BK; AK // BM hay AD // BK; AK // BC
Ta có: \(\Delta\)BAD cân tại A => ^ADB = ^ABD. Mà AD // BK => ^ADB = ^KBD
Nên ^ABD = ^KBD => BD là phân giác của ^ABK.
Chứng minh tương tự ta được: AC là phân giác của ^BAK.
Xét \(\Delta\)AKB có: BD là phân giác ^ABK; AC là phân giác ^BAK; AC giao BD ở O
=> KO là phân giác ^AKB hay KN là phân giác ^AKB => ^BKN = ^AKB/2
Mà ^AKB = 1800 - ^KBN (Do AK // BN) => ^BKN = (1800 - ^KBN) /2
=> \(\Delta\)NBK cân tại B => BN=BK. Lại có BK=AM (Do tứ giác AMBK là hbh)
=> BN=AM (đpcm).