giải phương trình (x là ẩn số ; a,b,c là hằng số và đôi một khác nhau)
a) 1/(a+b-x) = 1/a +1/b + 1/x
b) (b-c)(1+a)2 / (x+a2) + (c-a)(1+b)2 / (x+b2) + (a-b)(1+c)2 / (x+c2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.A = 2x2 + 2y2 - 2xy - 2x + 2y + 2 = (x2 - 2xy + y2 ) + (x2 - 2x + 1) + (y2 + 2y + 1) = (x - y)2 + (x - 1)2 + (y +1)2
= (x - y)2 + (1 - x)2 + (y +1)2
Ap dụng bđt Bu nhi a: (ax + by + cz)2 \(\le\) (a2 + b2 + c2)(x2 + y2 + z2). dấu = xảy ra khi a/x = b/y = c/z
ta có [(x - y).1 + (1- x).1 + (y + 1).1]2 \(\le\) [(x - y)2 + (1 - x)2 + (y +1)2].(12 + 12 + 12)
=> 4 \(\le\) 3. 2.A => A \(\ge\)2/3 => Min A = 2/3
dấu = xảy ra khi x - y = 1- x = y + 1 => x = 1/3; y = -1/3
ta có:
2x^2-4y=10
<=>2x^2-4y+2=12
<=>2(x^2-2y+1)=12
<=>(x-y)^2=6
<=>x-y=căn 6
vì căn 6 là số vô tỉ nên x-y là 1 số vô tỉ (1).
giả sử x,y là 2 nghiệm nguyên thì x-y nguyên trái với (1). Vậy pt ko có nghiệm nguyên.
Phương trình trên không phải không có nghiệm mà có rất nhiều nghiệm
Ta có 2x^2-4y=10 <=>2(x^2-2y)=10
<=>x^2-2y=5
Ta thấy 2y là số chẵn mà 5 là số lẻ =>x^2 là số lẻ từ đó ta cứ cho x là số lẻ sau đó suy ra giá trị của y
Ví dụ với x=3 =>x^2=9=>y=2
x=5=>x^2=25=>y=10
Cứ như thế ta sẽ tìm được tất cả các cặp số
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)
giả thiết
=> a^2 / b+ c + ab/c+a + ac/ a+ b = a
ab/ (b+c) + b^2 / (c+a) + cb/ a+b = b
ac/ b+ c + bc/ c+a + c^2/ a+b = c
Cộng từng vế với nhau ta được :
a^2 / b+ c + ab/c+a + ac/ a+ b + ab/ (b+c) + b^2 / (c+a) + cb/ a+b + ac/ b+ c + bc/ c+a + c^2/ a+b > a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + (ab/ (c+ a) + bc/ (c+a) ) + (ac/ (a+b) + cb/ (a+b)) + (ab/ (b+c) + ac/ (b+c)) = a+ b + c
=> (a^2/ b+ c + b^2/ c+a + c^2/ a+b) + b + c + a = a+ b + c
=> a^2/ b+ c + b^2/ c+a + c^2/ a+b = 0 (ĐPCM)
Đặt A = \(\frac{\left(x+10\right)^2}{x}=\frac{x^2+20x+100}{x}=x+20+\frac{100}{x}\)(1) (với x \(\ne\)0)
Đặt y = 1/x
A = y2 + 100y + 20 = (y + 50)2 - 2480 \(\ge\) - 2480
Vậy Min A = - 2480 khi y = - 50 => x = - 1/50 (thỏa đk)
Mà A = 1/P
=> A đạt nhỏ nhất khi P đạt lớn nhất
=> Max P = 1/A = -1/2480 khi x = - 1/50