viết công thức tính áp suất. Nêu rõ ý nghĩa và đơn vị đo của các đại lượng có mặt trong công thức?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x-5}+\dfrac{4x}{x+5}+\dfrac{x\left(x-15\right)}{x^2-25}\)
= \(\dfrac{x\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}+\dfrac{4x\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}+\dfrac{x\left(x-15\right)}{\left(x+5\right)\left(x-5\right)}\)
= \(\dfrac{x^2+5x+4x^2-20x+x^2-15x}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x^2-30x}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}\)
= \(\dfrac{6x}{x+5}\)
\(đk:x\ne1\\ \dfrac{x^2+5x}{3x^2-6x+3}:\dfrac{7x+35}{6x-6}\\ =\dfrac{x\left(x+5\right)}{3\left(x^2-2x+1\right)}:\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x\left(x+5\right)}{3\left(x-1\right)^2}\times\dfrac{6\left(x-1\right)}{7\left(x+5\right)}\\ =\dfrac{2x}{7\left(x-1\right)}\)
\(đk:x\ne1\)
\(\dfrac{x^2+5}{3x^2-6x+3}.\dfrac{7x+35}{6x-6}\\ =\dfrac{x^2+5}{3\left(x^2-2x+1\right)}.\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{x^2+5}{3\left(x-1\right)^2}.\dfrac{7\left(x+5\right)}{6\left(x-1\right)}\\ =\dfrac{7\left(x^2+5\right)\left(x+5\right)}{18.\left(x-1\right)^3}\)
\(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+1\right)^2\ge0\)
\(\Rightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(\left(x+y\right)^{2018}+\left(x-2\right)^{2019}+\left(y+1\right)^{2020}=\left(1-1\right)^{2018}+\left(1-2\right)^{2019}+\left(-1+1\right)^{2020}=-1\)
\(a,đk\left(B\right):x\ne\pm3\\ B=\dfrac{3}{x-3}-\dfrac{6x}{9-x^2}+\dfrac{x}{x+3}\\ =\dfrac{3}{x-3}+\dfrac{6x}{x^2-9}+\dfrac{x}{x+3}\\ =\dfrac{3\left(x+3\right)+6x+x\left(x-3\right)}{x^2-9}\\ =\dfrac{3x+9+6x+x^2-3x}{x^2-9}\\ =\dfrac{x^2+6x+9}{x^2-9}\\ =\dfrac{\left(x+3\right)^2}{x^2-9}\\ =\dfrac{x+3}{x-3}\)
\(b,P=A.B\\ =\dfrac{x+1}{x+3}\times\dfrac{x+3}{x-3}\\ =\dfrac{x+1}{x-3}\)
\(c,\) Để P nguyên
\(\dfrac{x+1}{x-3}=1+\dfrac{4}{x-3}\)
=> \(x-3\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
\(=>x=\left\{2;4;5;1;7;-1\right\}\)
Trả Lời : p= F/S
p= áp suất (N/m2)
F= áp lực (N)
S= Diện Tích bị ép (m2)