phân tích đa thức thành nhân tử 2x4 + 3x3- 9x2- 3x + 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(x) chia cho x2 - 4 được thương là -5x và còn dư là ax + b.
Khi đó f(x) = (x2 - 4).(-5x) + ax + b
Theo đề bài ta có :
f(2) 24 và f(-2) = 24 <=> 2a + b = 24 và -2a + b = 10 <=> a = \(\frac{7}{2}\) và b = 17
Do đó f(x) = (x2 - 4) . (-5x) + \(\frac{7}{2}\)x + 17
Vậy đa thức f(x) cần tìm có dạng f(x) = -5x3 + \(\frac{47}{2}\)x + 17
* Nếu x<2<=> A= -x+2-x+3=-2x+5
ta có: x<2 <=> -2x>-4 <=> -2x+5>1<=> A>1
*Nếu \(2\le x\le3\) <=> A=x-2-x+3=1
* Nếu x>3 <=> A=x-2+x-3=2x-5
ta có: x>3 <=> 2x>6 <=> 2x-5>1 <=> A>1
vậy => GTNN của A=1 <=> \(2\le x\le3\)
Đặt a = y + z; b = z+ x; c = x+ y (a;b;c > 0)
=> x+ y + z = (a+b+c)/2
=> x= (a+b+c)/2 - a = (b+c- a)/2
y = (a+b+c)/2 - b = (a+c-b)/2; z = (a+b - c)/ 2
Khi đó \(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}.\left(\frac{b}{a}+\frac{c}{a}-1+\frac{a}{b}+\frac{c}{b}-1+\frac{a}{c}+\frac{b}{c}-1\right)\)
=> \(P=\frac{b+c-a}{2a}+\frac{a+c-b}{2b}+\frac{a+b-c}{2c}=\frac{1}{2}.\left(\left(\left(\frac{b}{a}+\frac{a}{b}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)-3\right)\right)\)
AD BĐT Cô - si có: \(\frac{a}{b}+\frac{b}{a}\ge2;\frac{b}{c}+\frac{c}{b}\ge2;\frac{c}{a}+\frac{a}{c}\ge2\)
=> \(P\ge\frac{1}{2}.\left(2+2+2-3\right)=\frac{3}{2}\)=> Min P = 3/2
Dấu "=" khi a = b = c<=> x = y = z
Áp dụng Cauchy - Schwarz và AM-GM :
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
\(=\frac{x^2}{xy+xz}+\frac{y^2}{yz+xy}+\frac{z^2}{xz+yz}\)
\(\ge\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\)
\(\ge\frac{\left(x+y+z\right)^2}{\frac{2\left(x+y+z\right)^2}{3}}=\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z
Giả sử 10^150 + 5.10^50+1=m^3 (m là số tự nhiên)
Ta thấy VT có tận cùng là 1, suy ra VP phải có tận cùng 1.
mà 1^3=1,2^3=8,... nên m phải có tận cùng là 1, hay m=10k+1 (k là số tự nhiên)
10^150 + 5.10^50+1=(10k+1)^3=1000.k^3+300.k^2+30.k+1
10^150 + 5.10^50 - 1000.k^3- 300.k^2-30.k=0
suy ra A=10^150 + 5.10^50 - 1000.k^3chia hết cho 3
10^150=(9+1)^150 chia 3 dư 1
5.10^50=5.(9+1)^50 chia 3 dư 2
1000k=999k+k
suy ra k chia hết cho 3
10^150=(9+1)^150 chia 9 dư 1
5.10^50=5.(9+1)^50 chia 9 dư 5
suy ra 10^150 + 5.10^50chia 9 dư 6 (**)
mà 1000.k^3+ 300.k^2+30.k chia hết cho 9 (do k chia hết cho 3) (***)
Từ (**)(***) suy ra mâu thuẫn.
Vậy 10^150 + 5.10^50+1không thể là lập phương của 1 số tự nhiên.
=(20^2-19^2)+(18^2-17^2)+.....+(4^2-3^2)+(2^2-1^2)
=(20+19)(20-19)+(18+17)(18-17)+.....+((4+3)(4-3)+(2+1)(2-1)
=39+35+.....+7+3
=(3+39)10/2=210
\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\) chia hết cho \(\left(x+y\right)^2+\left(x-y\right)^2\) tức là chia hết cho \(2.\left(x^2+y^2\right)\) do đó chia hết cho \(x^2+y^2\)
x + y = 10 => y = 10 - x
\(S=\frac{1}{x}+\frac{1}{y}=\frac{y+x}{xy}=\frac{10}{x\left(10-x\right)}=\frac{10}{10x-x^2}\)
10x - x2 = - (x2 - 10x + 25) + 25 = - (x - 5)2 + 25 \(\le\) 25 với mọi x
=> \(S=\frac{10}{10x-x^2}\ge\frac{10}{25}=\frac{2}{5}\)
Vậy Min S = \(\frac{2}{5}\) khi x - 5 = 0 hay x = 5 => y = 5
P\(=\frac{\left(x+6\right)^2+\left(x-6\right)^2}{x^2+36}=\frac{\left(x^2+12x+36\right)+\left(x^2-12x+36\right)}{x^2+36}\)
=\(\frac{x^2+12x+36+x^2-12x+36}{x^2+36}=\frac{2x^2+72}{x^2+36}=\frac{2\left(x^2+36\right)}{x^2+36}=2\)
Vì P=2 nên giá trị của P không phụ thuộc vào giá trị của x
MIK giải đc nhưng ngại lắm , mỏi tay ,đáp số nè:
\(\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)