Phân tích đa thức sau thành nhân tử: x4+2011x2+2010x+2011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Tổng không đổi tích lớn nhất khi 2 số bằng nhau
Do \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)(không đổi)
Nên \(\frac{1}{\sqrt{xy}}\)lớn nhất \(\Leftrightarrow\frac{1}{\sqrt{x}}=\frac{1}{\sqrt{y}}=3\Leftrightarrow x=y=9\)
Khi đó Max \(\frac{1}{\sqrt{xy}}=3.3=9\)
<=>[(x+2)(x+5)][(x+3)(x+4)]-24=\(\left(x^2+7x+10\right)\left(\left(x^2+7x+12\right)\right)-24\)(1)
đặt x^2+7x+11=t
=> (1)<=> (t-1)(t+1)-24=t^2-1-24=t^2-25=(t-5)(t+5)
<=> \(\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
(x+2)(x+3)(x+4)(x+5)=24
(x+x+x+x)(2+3+4+5)=24
(x.4)14=24
x.4=24:14
x.4=2
x=2:4
X=1/2
mình cũng nghĩ là làm cách này => giống trên mạng => khỏi làm
P = 7.2014n + 12.1995n = 19.2014n -12.2014n + 12.1995n = 19.2014n - 12(2014n -1995n)
Ta có : 19. 2014n 19 ; (2014n -1995n) 19. nên P 19
Théo bđt Cauchuy Schwarz dạng Engel ta có :
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{3}\)
Đk: x,y,z khác 0.
ta có: \(\left(y-z\right)^2\ge0\Rightarrow y^2+z^2\ge2yz\Leftrightarrow x^2+y^2+z^2\ge x^2+2yz\Leftrightarrow\frac{yz}{x^2+2yz}\ge\frac{yz}{x^2+y^2+z^2}\)
tương tự thì \(A\ge\frac{xy}{x^2+y^2+z^2}+\frac{yz}{x^2+y^2+z^2}+\frac{xz}{x^2+y^2+z^2}=\frac{xy+yz+xz}{x^2+y^2+z^2}\)
từ đề bài =>\(\frac{xy+yz+xz}{xyz}=0\Rightarrow xy+yz+xz=0\)
=> A =0
\(\frac{x}{y}+\frac{y}{x}\ge2\Rightarrow\frac{x^2+y^2}{xy}-2\ge0\Rightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Rightarrow\frac{\left(x-y\right)^2}{xy}\ge0\)
ta có \(\left(x-y\right)^2\ge0\) Với mọi x thuộc R
mà x,y là 2 số cùng dấu suy ra x.y\(\ge\)0 Với mọi x thuộc R
suy ra \(\frac{\left(x-y\right)^2}{xy}\ge0\Rightarrow\frac{x}{y}+\frac{y}{x}\ge2\left(đpcm\right)\)
bài 1 sai đề rồi bạn. Nếu BEMD là ht cân thật thì \(\widehat{ABC}=\widehat{MDB}\)mà \(\widehat{MDB}=\widehat{ACB}\)(đồng vị) => \(\widehat{ABC}=\widehat{ACB}\)=> tam giác ABC cân( trái với đề bài)
(2x-5)3+27(x-1)3+(8-5x)3=0
<=>(2x-5)3+33(x-1)3+(8-5x)3=0
<=>(2x-5)3+(3x-3)3+(8-5x)3=0
Đặt a=2x-5
b=3x-3
c=8-5x
=>a+b+c=2x-5+3x-3+8-5x=0
và a3+b3+c3=0(theo đề bài ta có)
ta có (a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3a2b+3ab2+3(a+b)2c+3(a+b)c2
=a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c)
=a3+b3+c3+3(a+b)(ab+ca+cb+c2)
=a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
Mà a+b+c=0 và a3+b3+c3=0 nên
3(a+b)(b+c)(c+a)=0
<=>(a+b)(b+c)(c+a)=0
<=>(2x-5+3x-3)(3x-3+8-5x)(8-5x+2x-5)=0
<=>(5x-8)(-2x+5)(-3x-3)=0
<=>5x-8=0 hoặc -2x+5=0 hoặc -3x-3=0
<=> x =8/5 hoặc x =5/2 hoặc x =-1
\(\Leftrightarrow\frac{x-1}{2000}-1+\frac{x-2}{1999}-1+\frac{x-3}{1998}-1+....+\frac{x-1999}{2}-1=0\)
\(\Leftrightarrow\frac{x-2001}{2000}+\frac{x-2001}{1999}+\frac{x-2001}{1998}+....+\frac{x-2001}{2}=0\)
\(\Leftrightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+...+\frac{1}{2}\right)=0\)
\(\Leftrightarrow x-2001=0\)
\(\Leftrightarrow x=2001\)
x4+2011x2+2010x+2011
=(x4+x3+x2)+(2011x2+2011x+2011)-(x3+x2+x)
=x2(x2+x+1)+2011(x2+x+1)-x(x2+x+1)
=(x2+x+1)(x2+2011-x)
x4+2011x2+2010x+2011=x4-x+2011x2+2011x+2011
=x(x3-1)+2011(x2+x+1)
=x(x- 1)(x2+x+1)+2011(x2+x+1)
=(x2+x+1)[x(x-1)+2011]
=(x2+x+1)(x2-x+2011)