cho biểu thức P = ( x/x+1 - 1/1-x + 1/1-x2): x-2/x2-1
a, tìm điều kiện xác định và rút gọn
b, tìm tất cả các giá trị nguyên của x để biểu thức P nhân giá trị nguyên, với x>2, tìm giá trị nhỏ nhất của P
giúp mình với ạ làm chi tiết giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x + 5 = 3³ : 3² + 2³.2²
2x + 5 = 3 + 2⁵
2x + 5 = 3 + 32
2x + 5 = 35
2x = 35 - 5
2x = 30
x = 30 : 2
x = 15
a) 100 cm² = 0,01 (m²)
b) 4m² 5 cm² = 4,0005 (m²)
c) 20 ha = 0,2 km²
d) 7 tạ 50 kg = 7,5 tạ
a, 100 cm2 = \(\dfrac{100}{10000}\)m2 = 0,01 m2
Vậy 100 cm2 = 0,01 m2
b, 4m2 5cm2 = 4m2 + \(\dfrac{5}{10000}\)m2 = 4,0005 m2
Vậy 4m2 5cm2 = 4,0005 m2
c, 20 ha = \(\dfrac{20}{100}\) km2 = 0,2 km2
Vậy 20 ha = 0,2 km2
7 tạ 50 kg = 7 tạ + \(\dfrac{50}{100}\) tạ = 7 tạ + 0,5 tạ = 7,5 tạ
Vậy 7 tạ 50 kg = 7,5 tạ
a.b = 366; ƯCLN (a; b) = 4
Vì ƯCLN(a; b) = 4 nên a = 4.m; b = 4.n (m;n) = 1; m,n \(\in\) N
a.b = 4.m.4.n
Theo bài ra ta có: 4.m.4.n = 366
m.n = \(\dfrac{366}{4.4}\)
m.n = \(\dfrac{183}{2}\) (loại)
⇒ m; n \(\in\) \(\varnothing\)
Kết luận: Không có hai số tự nhiên nào thỏa mãn đề bài
3\(x^2\) - 27\(x\) + 6\(x^3\)
= 3\(x\).(\(x\) - 9\(x\) + 2\(x^2\))
A = 14.820 - 47.715
A = 7.(2.820 - 47.714) ⋮ 7
B = 2.49.8 + 91
B = 2.7.7.8 + 7.13
B = 7.(2.7.8 + 13) ⋮ 7
A = 32 + 102011 + 102012 + 102013 + 22014
A = 4.8 + 103.(102008 + 102009 + 102010) + 23.22011
A = 4.8 + 23.53.(102008 + 102009 + 102010) + 23.22011
A = 4.8 + 8.53.(102008 + 102009 + 102010) + 8. 22011
A = 8.(4 + 53.(102008 + 102009 + 102010 + 22011) ⋮ 8 (đpcm)
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
Lời giải:
$S=\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}$
$2^2S=1-\frac{1}{2^2}+\frac{1}{2^4}-....+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}$
$\Rightarrow S+2^2S=1-\frac{1}{2^{2004}}<1$
$\Rightarrow 5S< 1$
$\Rightarrow S< \frac{1}{5}$
Hay $S<0,2$