phân tích đa thức thành nhân tử : 9x2+90x+225-(x-7)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
Ta có:(2k+3)2-(2k+1)2=(2k+3-2k-1)(2k+3+2k+1)=2(4k+4)=8(k+1) chia hết cho 8
Vậy hiệu 2 số lẻ liên tiếp chia hết cho 8
gọi số học sinh khối 7 là x (hs)
=> số học sinh khối 8 là 3x (hs)
=> số học sinh khối 9 là 3x : \(\frac{4}{5}\) = \(\frac{15}{4}\)x (hs)
Tổng khối đất 3 khối đào được là: 1,2x + 1,4.3x + 1,6. \(\frac{15}{4}\).x = 11,4. x (m3)
Theo đề bài: 11,4 .x = 912 => x = 912 : 11,4 = 80
Vậy hs khối 7 là 80 hs
Khối 8 là 240 hs
Khối 9 là: 300 hs
Số học sinh khối 7 là 128 học sinh
Số học sinh khối 8 là 384 học sinh
Số học sinh khối 9 là 480 học sinh
a) PK là đường trung bình tam giác ABH nên IH = PK
MK song song CP nên cũng song song OP, lại có OM song song PK nên OMKP là hình bình hành, => OM = PK vậy IH = OM
Từ đó OMHI là HBH, => đpcm
b) IH = AI nên AOMI cũng là hình bình hành, suy ra OA = MI
Tam giác DMI vuông có Q là trung điểm IM => đpcm
a)\(A=\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1.\)
\(< =>A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)...\left(2^{256}+1\right)+1\)
\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{256}+1\right)+1\)
.....
\(=>A=\left(2^{256}-1\right)\left(2^{256}+1\right)+1\)\(=2^{512}-1+1=2^{512}\)
b) sai đề !
đề câu b phải là ( 5x - 3y +4z)(5x-3y-4z)=(3x-5y)^2 mới đúng
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\Rightarrow\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)
=>\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{2}{xy}-\frac{2}{xz}+\frac{2}{yz}=1\)
Ta có:\(-\frac{2}{xy}-\frac{2}{xz}+\frac{2}{yz}=-2\left(\frac{z+y-z}{xyz}\right)=0\)(Do x=y+z=>y+z-x=0)
=>ĐPCM
Điều kiện: x\(\ne\) 0; x \(\ne\) 2; -2; 3
A=\(\left(\frac{2+x}{2-x}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{2-x}{2+x}\right):\frac{x\left(x-3\right)}{x^2\left(2-x\right)}\)
A = \(\left(\frac{\left(2+x\right)^2}{\left(2-x\right)\left(2+x\right)}+\frac{4x^2}{\left(2-x\right)\left(2+x\right)}-\frac{\left(2-x\right)^2}{\left(2-x\right)\left(2+x\right)}\right).\frac{x\left(2-x\right)}{\left(x-3\right)}\)
A = \(\frac{x^2+4x+4+4x^2-\left(4-4x+x^2\right)}{\left(2-x\right)\left(2+x\right)}.\frac{x\left(2-x\right)}{\left(x-3\right)}\)
A = \(\frac{8x+4x^2}{\left(2+x\right)}.\frac{x}{\left(x-3\right)}=\frac{4x\left(x+2\right)}{\left(x+2\right)}.\frac{x}{x-3}=\frac{4x^2}{x-3}\)
Q= 2x2+9y2-6xy-6x-12y+2015
=(x2-6xy+9y2-12y+4+4x)+(x2-10x+25)+1986
=(x-3y+2)2+(x-5)2+1986
Do (x-3y+2)2>0
(x-5)2>0
=>(x-3y+2)2+(x-5)2+1986>1986
=>Min Q=1986 <=>(x-3y+2)2=0 và (x-5)2=0
<=>x=5 và y=7/3
\(=\left(3x+15\right)^2-\left(x-7\right)^2=\left(4x+8\right)\left(2x+22\right)=8\left(x+2\right)\left(x+11\right)\)
(x-7)^2 = x^2-14x+49
<=> 9x^2+90x+225 -x^2+14x-49
= 8x^2+104x+176
= 8(x^2+13+22)
<=> 8(x+2)(x+11)