K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2022

Ta có:

\(x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{3}>0\)

Vì \(x^2+x+1>0\)nên phương trình đã cho vô nghiệm, mà nó đã vô nghiệm thì \(x^2+x+1\ne0\)với mọi x, thế nên ta sẽ có: \(1^2+1+1=3\ne0\)với x = 1

Ở đây với x thuộc R thì ko có giá trị nào thỏa pt đã cho.
=> Sai ở chỗ sử dụng phương trình vô nghiệm để thế x = 1 vào

(Với ở đây mình nghĩ sẽ sai cả bài vì ko thể dùng phương trình vô nghiệm để biến đổi được vì ta luôn có \(x^2+x+1\ne0\))

20 tháng 3 2022

Bài này sai ở chỗ thay \(x+1=-x^2\) vào pt thứ hai \(x+1+\frac{1}{x}=0\).
Khi bạn làm điều này, bạn đã vô tình làm cho phát sinh ra nghiệm ngoại lai (một nghiệm khác không phải là nghiệm của pt ban đầu \(x^2+x+1=0\))

Pt ban đầu \(x^2+x+1=0\)không có nghiệm thực, nhưng có 2 nghiệm ảo là \(\frac{-1+i\sqrt{3}}{2};\frac{-1-i\sqrt{3}}{2}\)

Khi biến đổi tương đương sang pt thứ hai \(x+1+\frac{1}{x}=0\), pt vẫn chỉ có 2 nghiệm trên.

Nhưng khi thay \(x+1=-x^2\) vào pt thứ hai \(x+1+\frac{1}{x}=0\), sẽ được phương trình \(-x^2+\frac{1}{x}=0\)có thêm 1 nghiệm nữa là \(x=1\)hoàn toàn không phải là nghiệm của 2 pt ban đầu.

Mình đăng câu hỏi này mong các bạn cẩn thận trong các phép biến đổi tương đương dễ làm phát sinh ra nghiệm ngoại lai, tránh gặp phải những kết quả vô lí như phép chứng minh \(3=0\)vừa rồi.

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
a. Vì $AM$ là đường kính nên $\widehat{ABM}=90^0$ (góc nt chắn nửa đường tròn) 

$\Rightarrow BM\perp AB$ 

Mà $CH\perp AB$ nên $BM\parallel CH(1)$

Tương tự: $\widehat{ACM}=90^0$ nên $AC\perp CM$

Mà $AC\perp BH$ nên $CM\parallel BH(2)$

Từ $(1); (2)$ suy ra $BHCM$ là hbh (tứ giác có 2 cặp cạnh đối song song) 

b.

$\widehat{BAN}=90^0-\widehat{ABD}=90^0-\widehat{ABC}$

$=90^0-\widehat{AMC}$ (góc nt cùng chắn cung AC)

$=\widehat{MAC}$ (đpcm) 

Vì $\widehat{BAN}=\widehat{MAC}$

$\Rightarrow \widehat{BAN}+\widehat{NAM}=\widehat{MAC}+\widehat{NAM}$

$\Leftrightarrow \widehat{BAM}=\widehat{CAN}$
$\Leftrightarrow \frac{1}{2}\text{sđc(BM)}=\frac{1}{2}\text{sđc(CN)}$

$\Leftrightarrow \widehat{BCM}=\widehat{CBN}(*)$

Lại có:

$\widehat{ANM}=90^0$ (góc nt chắn nửa đường tròn) 

$\Rightarrow AN\perp MN$

Mà $AN\perp BC\Rightarrow MN\parallel BC$

$\Rightarrow BNMC$ là hình thang $(**)$

Từ $(*); (**)$ suy ra $BNMC$ là htc.

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Hình vẽ:

NV
20 tháng 3 2022

\(\dfrac{k-1}{k!}=\dfrac{k}{k!}-\dfrac{1}{k!}=\dfrac{1}{\left(k-1\right)!}-\dfrac{1}{k!}\)

\(\Rightarrow S=\dfrac{1}{1!}-\dfrac{1}{2!}+\dfrac{1}{2!}-\dfrac{1}{3!}+...+\dfrac{1}{2021!}-\dfrac{1}{2022!}\)

\(=1-\dfrac{1}{2022!}\)

24 tháng 5 2020

Gọi x; y lần lượt  là số tấn thóc đơ vị thứ nhất; thứ hai  thu hoạch được  trong năm ngoái ( x, y > 0 ; tấn thóc ) 

Ta có: x + y = 600 ( tấn thóc )  (1)

Năm nay đơn vị thứ nhất làm vượt mức 10% 

=> Đơn vị thứ nhất làm được: x + 10% x = 1,1 x ( tấn thóc )

Đơn vị thứ 2 làm vượt mức 20% 

=> Đơn vị thứ nhất làm được: y + 20% y = 1,2 y ( tấn thóc )

=> 1,1 x + 1,2y = 685 ( tấn thóc ) (2) 

Từ (1); (2) => x = 350 ( tấn thóc ) và y = 250 ( tấn thóc ) 

Vậy:...

31 tháng 3 2021

Gọi số tấn thóc mà đơn vị một thu hoạch đc vào năm ngoái là x (tấn)

Số tấn thóc mà đơn vị hai thu hoạch đc vào năm ngoái là y ( tấn .         X,y lớn hơn 0

Năm ngoái hai đơn vị sx nông nghiệp thu hoạch đc 600 tấn thóc => x + y = 600 (1) 

Năm nay ,đơn vị một vượt mức 10% nên thu hoạch đc số tấn thóc là 0,1x 

Đơn vị hai vượt mức 20% nên thu hoạch đc số tấn thóc là 0,2y

Nên năm nay thu hoạch hơn năm ngoái 685-600 = 85 (tấn)

Nên ta có pt : 0,1x + 0,2y = 85 (2)

(1),(2) => ta có hpt x+ y =600

                                   0,1x + 0,2y = 85

<=> x= 350 

       Y= 250

 

 

13 tháng 3 2022

chịuuuuuuuuuuuuuuuuuuuuuuuuuu

13 tháng 3 2022

Gọi\(M ′ ( x ; y ) . Suy ra −−→ I M = ( − 9 ; − 1 ) , −−→ I M ′ = ( x − 2 ; y − 3 ) .\)

Ta có V(I,−2)(M)=M′⇔−−→IM′=−2−−→IMV(I,−2)(M)=M′⇔IM′→=−2IM→ ⇒{x−2=−2.(−9)y−3=−2.(−1)⇒{x−2=−2.(−9)y−3=−2.(−1) ⇔{x=20y=5⇒M′(20;5)

hỉu ko ?

13 tháng 3 2022

sai hay đúng vậy ?????????

T_T

mog đúng

11 tháng 3 2022

\(\hept{\begin{cases}3x+2y=26500\\4x+3y=37000\end{cases}\Leftrightarrow\hept{\begin{cases}9x+6y=79500\\8x+6y=74000\end{cases}\Leftrightarrow}\hept{\begin{cases}x=79500-74000\\3x+2y=26500\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=5500\\16500+2y=26500\end{cases}\Leftrightarrow\hept{\begin{cases}x=5500\\2y=10000\end{cases}\Leftrightarrow}\hept{\begin{cases}x=5500\\y=5000\end{cases}}}\)

Vậy.....

11 tháng 3 2022

\(\hept{\begin{cases}3x+2y=26500\\4x+3y=37000\end{cases}}\Leftrightarrow\hept{\begin{cases}9y+6y=79500\\8x+6y=74000\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5500\\3x+2y=26500\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5500\\3.5500+2y=26500\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5500\\y=5000\end{cases}}\)