3 đội y tế tiêm ngừa vaccine covid-19 tai3 trường thcs trong quận có số lượng học sinh đăng kí tiêm chủng như nhau. đội thứ nhất tiêm xongtrong 5 ngày, đọi thứ 2 tiêm xong trong 4 ngày và đội thứ 3 tiêm xong trong 6 ngày.hỏi mỗi đội có bao nhiêu cán bộ y tế,biết cả 3 đội y tế có tất cả 37 cán bộ y tế? (năng suất làm việc của các cán bộ là như nhau)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một công nhân hoàn thành công việc đó trong số ngày là:
12 x 16 = 192 ( ngày )
Để hoàn thành công việc đó trong 8 ngày cần số công nhân là:
192 : 8 = 24 ( công nhân )
Số công nhân cần bổ sung thêm là:
24 - 16 = 8 ( người)
Kết luận :...
A B C I E D
a, Xét tam giác ADB và tam giác AEC có :
AE = AD ( gt )
\(\widehat{A}\) chung
AB = AC ( gt )
=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)
b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )
=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
BD nằm giữa 2 tia EB và EC
=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)
\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )
CE nằm giữa 2 tia CD và CB
\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)
\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )
Từ ( 1 ) và ( 2 )
=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)
Xét tam giác IBC có
\(\widehat{IBC}=\widehat{ICB}\)
=> tam giác IBC cân tại I
c, Xét tam giác AED có :
AE = AD ( gt )
=> Tam giác AED cân tại A
=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )
Tam giác ABC cân tại A
=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )
Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)
Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)
=> ED // BC ( đpcm)
Sửa đề bài \(\dfrac{x}{3}=\dfrac{y}{6}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{6}=k\)
x = 3k , y = 6k
\(xy=3k.6k=18k^2=62\)
\(\Leftrightarrow k^2=\dfrac{31}{9}\)
\(\Leftrightarrow\left[{}\begin{matrix}k=\sqrt{\dfrac{31}{9}}\\k=-\sqrt{\dfrac{31}{9}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{\sqrt{31}}{3}\\k=-\dfrac{\sqrt{31}}{3}\end{matrix}\right.\)
TH1 : \(k=\dfrac{\sqrt{31}}{3}\)
x = 3k = \(3.\dfrac{\sqrt{31}}{3}=\sqrt{31}\)
y = 6k = \(6.\dfrac{\sqrt{31}}{3}=2\sqrt{31}\)
TH2 : \(k=-\dfrac{\sqrt{31}}{3}\)
x = 3k = \(3.-\dfrac{\sqrt{31}}{3}=-\sqrt{31}\)
y = 6k = \(6.-\dfrac{\sqrt{31}}{3}=-2\sqrt{31}\)
Vậy các cặp {x,y }là { \(\sqrt{31}\);\(2\sqrt{31}\)} ; { \(-\sqrt{31}\); \(-2\sqrt{31}\)}
Gọi số tờ giấy bạc của 4 gói : 1000 đ , 2000 đ , 5000đ , 10 000 đ là x,y,z,t ( \(x,y,z\in\) N* )
Theo đề bài ta có :
1000x = 2000y = 5000z = 10 000t
\(\Rightarrow\dfrac{1000x}{10000}=\dfrac{2000y}{10000}=\dfrac{5000z}{10000}=\dfrac{10000t}{10000}\)
\(=>\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{t}{1}\) và \(x+y+z+t=900\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{10}=\dfrac{y}{5}=\dfrac{z}{2}=\dfrac{t}{1}=\dfrac{x+y+z+t}{10+5+2+1}=\dfrac{900}{18}=50\)
\(\dfrac{x}{10}=50=>x=500\)
\(\dfrac{y}{5}=50=>y=250\)
\(\dfrac{z}{2}=50=>z=100\)
\(t=50\)
Vậy số tờ giấy bạc của 4 loại 1000 đ , 2000đ , 5000đ , 10000 đ lần lượt là 500 , 250 , 100 , 50 ( tờ )
theo đề bài ta có :
a và b tỉ lệ nghịch với 3 và 2
=> 3a = 2b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}\) ( 1 )
b và c tỉ lệ nghịch với 3 và 2
=> 3b = 2c => \(\dfrac{b}{2}=\dfrac{c}{3}\Rightarrow\dfrac{b}{6}=\dfrac{c}{9}\) ( 2 )
Từ ( 1 ), ( 2 ) => \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}\) và 2a + 3b - 4c = 100
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}=\dfrac{2a+3b-4c}{8+18-36}=\dfrac{100}{-10}=-10\)
\(\dfrac{a}{4}=-10\Rightarrow a=-40\)
\(\dfrac{b}{6}=-10\Rightarrow b=-60\)
\(\dfrac{c}{9}=-10=>c=-90\)
Vậy 3 số a,b,c lần lượt là -40 ; -60 ; -90
Gọi độ dài 3 cạnh tam giác lần lượt là x;y;z
Do độ dài các cạnh tỉ lệ với 3;5;7 nên: \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\)
Do cạnh lớn nhất dài hơn cạnh nhỏ nhất 40m nên: \(z-x=40\)
Áp dụng tính chất tỉ lệ thức:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{z-x}{7-3}=\dfrac{40}{4}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.10=30\\y=5.10=50\\z=7.10=70\end{matrix}\right.\)
Vậy độ dài 3 cạnh tam giác là 30m, 50m, 70m
Gọi a,b,c là 3 cạnh của tam giác ( a,b,c > 0)
Theo đề bài ta có :
Do a,b,c tỉ lệ nghịch với 8;9;12 => 8a = 9b = 12c
\(\Rightarrow\dfrac{8a}{72}=\dfrac{9b}{72}=\dfrac{12c}{72}\)\(\Rightarrow\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{6}\) và \(a+b+c=46\)
Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{6}=\dfrac{a+b+c}{9+8+6}=\dfrac{46}{23}=2\)
\(\dfrac{a}{9}=2\Rightarrow a=18\) ( cm )
\(\dfrac{b}{8}=2\Rightarrow b=16\) ( cm )
\(\dfrac{c}{6}=2\Rightarrow c=12\) ( cm)
Vậy độ dài 3 cạnh của tam giác lần lượt là 18,16,12
Lời giải:
Gọi số cán bộ y tế của 3 đội lần lượt là $a,b,c$ (người)
Ta có: $a+b+c=37$
Vì số người tỉ lệ nghịch với số ngày hoàn thành công việc nên:
$5a=4b=6c$
Áp dụng tính chất dãy tỉ số bằng nhau:
$5a=4b=6c=\frac{a}{\frac{1}{5}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}=\frac{a+b+c}{\frac{1}{5}+\frac{1}{4}+\frac{1}{6}}=\frac{37}{\frac{37}{60}}=60$
$\Rightarrow a=60:5=12; b=60:4=15; c=60:6=10$