K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2015

Hai bạn học cùng lớp hay sao mà câu hỏi như nhau?

a)  Đặt \(a=\sqrt[3]{x+1},b=\sqrt[3]{x-1}\)    thì \(a+b=\sqrt[3]{5x}\). Lập phương hai vế cho ta 

\(5x=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=2x+3\sqrt[3]{x^2-1}\cdot\sqrt[3]{5x}\)

\(\Rightarrow x=\sqrt[3]{5x\left(x^2-1\right)}\Leftrightarrow x^3=5x\left(x^2-1\right)\Leftrightarrow x=0\)  hoặc \(x^2=5\left(x^2-1\right)\).

Từ đây ta được nghiệm \(x=0,\frac{\pm\sqrt{5}}{2}\)

b)  Đặt \(a=\sqrt[3]{x-7},b=\sqrt[3]{x-3}\)  thì \(a+b=6\sqrt{ab}\). Điều kiện \(ab\ge0.\) Ta chia ra hai trường hợp

 Trường hợp 1.  Nếu \(x\ge7\)  thì \(a,b\ge0\).  Chia

cả hai vế cho b, ta được \(\frac{a}{b}=3\pm2\sqrt{2}\) suy ra  \(\frac{\sqrt[3]{x-7}}{\sqrt[3]{x-3}}=3-2\sqrt{2}\)  (Nghiệm \(3+2\sqrt{2}>1>\frac{a}{b}\)).  Từ đó ta được \(x-7=\left(3-2\sqrt{2}\right)^2\left(x-3\right)\Leftrightarrow x-7=\left(17-12\sqrt{2}\right)\left(x-3\right)\Leftrightarrow x=\frac{11-9\sqrt{2}}{4-3\sqrt{2}}.\) (thỏa mãn)

Trường hợp 2. Nếu \(x\le3\)  thì \(a,b\le0.\) Chia cả hai vế cho b ta được \(\frac{a}{b}=-3\pm2\sqrt{2}\). Từ đó loại nghiệm vì a/b dương. 

Do đó phương trình có nghiệm duy nhất  \(x=\frac{11-9\sqrt{2}}{4-3\sqrt{2}}.\)

 

20 tháng 8 2015

\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)

=> \(\sqrt{2}.\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{2}.\sqrt{x-2-\sqrt{2x-5}}=4\)

=> \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)

=>   \(\sqrt{\left(\sqrt{2x-5}\right)^2+2\sqrt{2x-5}.3+3^2}+\sqrt{\left(\sqrt{2x-5}\right)^2-2\sqrt{2x-5}.1+1}=4\)

=> \(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)

Vậy điều kiên của phương trình là : 2x - 5 \(\ge\) 0 <=> x \(\ge\) 5/2. Khi đó, PT đã cho tương đương với

\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)

<=> \(\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)

+) Nếu \(\sqrt{2x-5}-1\ge0\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì phương tringf trở thành

\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)

<=> \(\sqrt{2x-5}=2\) <=> 2x - 5 = 4 <=> x = 4,5 ( Thỏa mãn)

+) Nếu \(0\le\sqrt{2x-5}<1\Leftrightarrow2,5\le x<3\) thì

\(\sqrt{2x-5}+3-\sqrt{2x-5}+1=4\)

<=> 4 = 4 Luôn đúng 

=> 2,5 \(\le\) x < 3 đều là nghiệm của PT

Vậy PT đã cho có nghiệm x = 4,5 ;  2,5 \(\le\) x < 3 

19 tháng 8 2015

Đặt t = x+ x . Phương trình trở thành: 3t- 2t - 1 = 0 

Nhận xét: 3 - 2 + (-1) = 0 nên phương trình có 2 nghiệm là t = 1 hoặc t  -1/3

+) t = 1 => x2 + x = 1 <=> x+ x - 1 = 0 

\(\Delta\) = 5 => x\(\frac{-1+\sqrt{5}}{2}\); x2 = \(\frac{-1-\sqrt{5}}{2}\)

+) t = -1/3 => 3x2 + 3x + 1 = 0  (*)

\(\Delta\) = 9 - 12 = - 3 < 0 => pt (*) vô nghiệm 

Vậy PT đã cho có 2 nghiệm x1 = ..; x2 = ...

18 tháng 8 2015

Áp dụng bất đẳng thức Bu- nhi -a ta có: 

(a + b)\(\le\) 2. (a2 + b2)  

=> (a + b)4 \(\le\) 4. (a+ b2)= 4.\(\left(\sqrt{a}.a\sqrt{a}+\sqrt{b}.b\sqrt{b}\right)^2\le4.\left(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right).\left(\left(a\sqrt{a}\right)^2+\left(b\sqrt{b}\right)^2\right)\)

= 4. (a + b) . (a+ b3

=>  (a + b)\(\le\) 8.(a + b)

Vì a+ b= (a + b). (a2 - ab + b2) = 2 Mà a- ab + b> 0 nên a + b > 0 

Do đó, (a + b)\(\le\) 8 => a+ b \(\le\) 2

Dấu "=" khi a = b = 1

18 tháng 8 2015

Vì 7 ko thể viết đc dưới dạng a2 (a là số nguyên) nên căn 7 là số vô tỷ

18 tháng 8 2015

Giả sử \(\sqrt{7}\) là số hữu tỉ =>  Đặt \(\sqrt{7}\) = a/ b ( Với a; b thuộc Z và a; b nguyên tố cùng nhau )

=> 7 = (a/b)2 => a= 7b2 => a2  chia hết cho 7 => a chia hết cho 7 => achia hết cho 49 => a= 49.k

=> 7b= 49.k => b2 = 7.k mà a= 49.k

=> ƯCLN (a2; b2) chia hết cho 7, trái với giả sử vì a; b nguyên tố cùng nhau thì a2 và bnguyên tố cùng nhau

Vậy điều giả sử sai

=> \(\sqrt{7}\) là số vô tỉ

17 tháng 8 2015

Vừa post xong

Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\)  là tích \(n\)  số nguyên dương đầu tiên. Khi đó ta sẽ có

Tử số bằng  \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)

Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).

Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).

Cuối cùng ta có  \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)

\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)

ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.

 

17 tháng 8 2015

Chứng minh: (bài toán phụ): tam giác ABC có BC = a; AC - b; AB = c. Chứng minh: b= a2 + c- 2ac. cosB

A B C H c b a

kẻ đường cao AH . 

Áp dụng ĐL Pi ta go trong tam giác vuông AHC có:   b2 = AH+ CH= AH+ (BC - BH)2 = (AH + BH) + BC- 2.BH.BC 

=> b= AB + BC - 2.AB. cosB . BC = c+ a- 2ca. cosB

17 tháng 8 2015

a) 

A B C M N G

Gọi G là giao của BM và CN

Áp dụng ĐL Pi ta go trong tam giác vuông GBC có: GB2 + GC2 = BC= a2   (*)

Áp dụng kết quả bài toán phụ ( chứng minh trên) trong tam giác BMC ta có: 

BM= BC+ CM2 - 2.CM . BC. cos C

Thay  CM = b/2 ; cos C = \(\frac{a^2+b^2-c^2}{2ab}\) ta được BM= a2 + \(\frac{b^2}{4}\) - 2.\(\frac{b}{2}\). a. \(\frac{a^2+b^2-c^2}{2ab}\) = ...= \(\frac{2a^2+2c^2-b^2}{4}\)

Áp dụng tương tự, trong tam giác CNB có: CN\(\frac{2b^2+2a^2-c^2}{4}\)

Vì G là trọng tâm tam giác ABC nên GB = \(\frac{2}{3}\) BM ; GC = \(\frac{2}{3}\) CN 

=> GB\(\frac{4}{9}\)BM\(\frac{4}{9}\).\(\frac{2a^2+2c^2-b^2}{4}\)

GC2 = \(\frac{4}{9}.\frac{2b^2+2a^2-c^2}{4}\)

Thay vào (*) ta được  : \(a^2=\frac{4\left(2a^2+2c^2-b^2\right)}{36}+\frac{4\left(2b^2+2a^2-c^2\right)}{36}\)

=> 36a= 16a2 + 4c+ 4b

=> 5a= b+ c2  => a= (b+ c2)/5

1 tháng 10 2017

I don't know

1 tháng 10 2017

Xin lỗi nha !

16 tháng 8 2015

a) 

ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)

\(\left(1\right)\Leftrightarrow x\ge4\)

\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)

\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)

Vậy ĐKXĐ là \(x>4\)

b)

\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)

\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)

thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)

A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)

Mà \(0<\)\(x-4\le4\)

Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)

\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)

\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)

Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.

Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)

Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)

A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)

\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)

Vậy \(x\in\left\{6;8;68\right\}\)

c/

\(+0<\sqrt{x-4}\)\(<2\)

Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)

\(+\sqrt{x-4}\ge2\)

\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)

 Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)

\(\Rightarrow A\ge2.4=8\)

Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)

Vậy GTNN của A là 8 khi x = 8.