GPT:
a) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
b) \(\sqrt[3]{x-7}+\sqrt[3]{x-3}=6\sqrt[6]{\left(x-7\right)\left(x-3\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
=> \(\sqrt{2}.\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{2}.\sqrt{x-2-\sqrt{2x-5}}=4\)
=> \(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
=> \(\sqrt{\left(\sqrt{2x-5}\right)^2+2\sqrt{2x-5}.3+3^2}+\sqrt{\left(\sqrt{2x-5}\right)^2-2\sqrt{2x-5}.1+1}=4\)
=> \(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
Vậy điều kiên của phương trình là : 2x - 5 \(\ge\) 0 <=> x \(\ge\) 5/2. Khi đó, PT đã cho tương đương với
\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
<=> \(\sqrt{2x-5}+3+\left|\sqrt{2x-5}-1\right|=4\)
+) Nếu \(\sqrt{2x-5}-1\ge0\Leftrightarrow2x-5\ge1\Leftrightarrow x\ge3\) thì phương tringf trở thành
\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
<=> \(\sqrt{2x-5}=2\) <=> 2x - 5 = 4 <=> x = 4,5 ( Thỏa mãn)
+) Nếu \(0\le\sqrt{2x-5}<1\Leftrightarrow2,5\le x<3\) thì
\(\sqrt{2x-5}+3-\sqrt{2x-5}+1=4\)
<=> 4 = 4 Luôn đúng
=> 2,5 \(\le\) x < 3 đều là nghiệm của PT
Vậy PT đã cho có nghiệm x = 4,5 ; 2,5 \(\le\) x < 3
Đặt t = x2 + x . Phương trình trở thành: 3t2 - 2t - 1 = 0
Nhận xét: 3 - 2 + (-1) = 0 nên phương trình có 2 nghiệm là t = 1 hoặc t -1/3
+) t = 1 => x2 + x = 1 <=> x2 + x - 1 = 0
\(\Delta\) = 5 => x1 = \(\frac{-1+\sqrt{5}}{2}\); x2 = \(\frac{-1-\sqrt{5}}{2}\)
+) t = -1/3 => 3x2 + 3x + 1 = 0 (*)
\(\Delta\) = 9 - 12 = - 3 < 0 => pt (*) vô nghiệm
Vậy PT đã cho có 2 nghiệm x1 = ..; x2 = ...
Áp dụng bất đẳng thức Bu- nhi -a ta có:
(a + b)2 \(\le\) 2. (a2 + b2)
=> (a + b)4 \(\le\) 4. (a2 + b2)2 = 4.\(\left(\sqrt{a}.a\sqrt{a}+\sqrt{b}.b\sqrt{b}\right)^2\le4.\left(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right).\left(\left(a\sqrt{a}\right)^2+\left(b\sqrt{b}\right)^2\right)\)
= 4. (a + b) . (a3 + b3)
=> (a + b)4 \(\le\) 8.(a + b)
Vì a3 + b3 = (a + b). (a2 - ab + b2) = 2 Mà a2 - ab + b2 > 0 nên a + b > 0
Do đó, (a + b)3 \(\le\) 8 => a+ b \(\le\) 2
Dấu "=" khi a = b = 1
Vì 7 ko thể viết đc dưới dạng a2 (a là số nguyên) nên căn 7 là số vô tỷ
Giả sử \(\sqrt{7}\) là số hữu tỉ => Đặt \(\sqrt{7}\) = a/ b ( Với a; b thuộc Z và a; b nguyên tố cùng nhau )
=> 7 = (a/b)2 => a2 = 7b2 => a2 chia hết cho 7 => a chia hết cho 7 => a2 chia hết cho 49 => a2 = 49.k
=> 7b2 = 49.k => b2 = 7.k mà a2 = 49.k
=> ƯCLN (a2; b2) chia hết cho 7, trái với giả sử vì a; b nguyên tố cùng nhau thì a2 và b2 nguyên tố cùng nhau
Vậy điều giả sử sai
=> \(\sqrt{7}\) là số vô tỉ
Vừa post xong
Lời giải như sau: Kí hiệu \(n!=1\cdot2\cdots n\) là tích \(n\) số nguyên dương đầu tiên. Khi đó ta sẽ có
Tử số bằng \(\left(2\cdot1\right)\left(2\cdot3\right)\left(2\cdot5\right)\cdots\left(2\cdot\left(2n-1\right)\right)=2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right).\)
Mẫu số bằng \(\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)\left(n+5\right)\cdots\left(2n\right)}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}=\frac{\left(2n\right)!}{n!}\cdot\frac{1}{\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)}\).
Suy ra \(a_n=\frac{2^n\cdot1\cdot3\cdot5\cdots\left(2n-1\right)}{\left(2n\right)!}\cdot n!\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\frac{2^n\cdot n!}{\left(2\cdot1\right)\left(2\cdot2\right)\cdots\left(2\cdot n\right)}\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\).
Cuối cùng ta có \(a_n=\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=y\left(y+2\right)+1=\left(y+1\right)^2\)
ở đó \(y=n^2+5n+4\) là số nguyên. Vậy \(a_n\) là số chính phương.
Chứng minh: (bài toán phụ): tam giác ABC có BC = a; AC - b; AB = c. Chứng minh: b2 = a2 + c2 - 2ac. cosB
A B C H c b a
kẻ đường cao AH .
Áp dụng ĐL Pi ta go trong tam giác vuông AHC có: b2 = AH2 + CH2 = AH2 + (BC - BH)2 = (AH2 + BH2 ) + BC2 - 2.BH.BC
=> b2 = AB2 + BC2 - 2.AB. cosB . BC = c2 + a2 - 2ca. cosB
a)
A B C M N G
Gọi G là giao của BM và CN
Áp dụng ĐL Pi ta go trong tam giác vuông GBC có: GB2 + GC2 = BC2 = a2 (*)
Áp dụng kết quả bài toán phụ ( chứng minh trên) trong tam giác BMC ta có:
BM2 = BC2 + CM2 - 2.CM . BC. cos C
Thay CM = b/2 ; cos C = \(\frac{a^2+b^2-c^2}{2ab}\) ta được BM2 = a2 + \(\frac{b^2}{4}\) - 2.\(\frac{b}{2}\). a. \(\frac{a^2+b^2-c^2}{2ab}\) = ...= \(\frac{2a^2+2c^2-b^2}{4}\)
Áp dụng tương tự, trong tam giác CNB có: CN2 = \(\frac{2b^2+2a^2-c^2}{4}\)
Vì G là trọng tâm tam giác ABC nên GB = \(\frac{2}{3}\) BM ; GC = \(\frac{2}{3}\) CN
=> GB2 = \(\frac{4}{9}\)BM2 = \(\frac{4}{9}\).\(\frac{2a^2+2c^2-b^2}{4}\)
GC2 = \(\frac{4}{9}.\frac{2b^2+2a^2-c^2}{4}\)
Thay vào (*) ta được : \(a^2=\frac{4\left(2a^2+2c^2-b^2\right)}{36}+\frac{4\left(2b^2+2a^2-c^2\right)}{36}\)
=> 36a2 = 16a2 + 4c2 + 4b2
=> 5a2 = b2 + c2 => a2 = (b2 + c2)/5
a)
ĐKXĐ: \(x-4\ge0\text{ (1)};\text{ }x+4\sqrt{x-4}\ge0\text{ (2); }\frac{16}{x^2}-\frac{8}{x}+1>0\text{ (3)}\)
\(\left(1\right)\Leftrightarrow x\ge4\)
\(\left(2\right)\Leftrightarrow\left(\sqrt{x-4}+2\right)^2\ge0\text{ (đúng }\forall x\ge4\text{)}\)
\(\left(3\right)\Leftrightarrow\left(\frac{4}{x}-1\right)^2>0\Leftrightarrow\frac{4}{x}-1\ne0\Leftrightarrow x\ne4\)
Vậy ĐKXĐ là \(x>4\)
b)
\(A=\frac{\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|}{\left|\frac{4}{x}-1\right|}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}=\frac{x\left(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\right)}{x-4}\)
\(+\sqrt{x-4}\le2\Leftrightarrow0<\)\(x-4\le4\)
thì \(A=\frac{x\left(\sqrt{x-4}+2+2-\sqrt{x-4}\right)}{x-4}=\frac{4x}{x-4}=4+\frac{16}{x-4}\)
A nguyên khi \(\frac{16}{x-4}\)nguyên hay \(x-4\inƯ\left(16\right)\)
Mà \(0<\)\(x-4\le4\)
Nên \(x-4\in\left\{2;4\right\}\Rightarrow x\in\left\{6;8\right\}\)
\(+\text{Xét }\sqrt{x-4}>2\Leftrightarrow x-4>4\)
\(A=\frac{x\left(\sqrt{x-4}+2+\sqrt{x-4}-2\right)}{x-4}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
Nếu \(\sqrt{x-4}\)là số vô tỉ thì A là số vô tỉ.
Để A là hữu tỉ thì \(\sqrt{x-4}=t\text{ }\left(t\in Z;\text{ }t>4\right)\Rightarrow x=t^2+4\)
Khi đó, \(A=\frac{2\left(t^2+4\right)}{t}=2t+\frac{8}{t}\)
A nguyên khi \(\frac{8}{t}\) nguyên hay \(t=8\text{ (do }t>4\text{)}\)
\(t=\sqrt{x-4}=8\Leftrightarrow x=8^2+4=68\)
Vậy \(x\in\left\{6;8;68\right\}\)
c/
\(+0<\sqrt{x-4}\)\(<2\)
Thì \(A=4+\frac{16}{x-4}>4+\frac{16}{4}=8\)
\(+\sqrt{x-4}\ge2\)
\(A=\frac{2x}{\sqrt{x-4}}=2t+\frac{8}{t}\text{ (}t=\sqrt{x-4}\ge2\text{)}\)
Mà \(t+\frac{4}{t}\ge2\sqrt{t.\frac{4}{t}}=4\)
\(\Rightarrow A\ge2.4=8\)
Dấu "=" xảy ra khi \(t=\frac{4}{t}\Leftrightarrow t=2\Leftrightarrow\sqrt{x-4}=2\Leftrightarrow x=8\)
Vậy GTNN của A là 8 khi x = 8.
Hai bạn học cùng lớp hay sao mà câu hỏi như nhau?
a) Đặt \(a=\sqrt[3]{x+1},b=\sqrt[3]{x-1}\) thì \(a+b=\sqrt[3]{5x}\). Lập phương hai vế cho ta
\(5x=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=2x+3\sqrt[3]{x^2-1}\cdot\sqrt[3]{5x}\)
\(\Rightarrow x=\sqrt[3]{5x\left(x^2-1\right)}\Leftrightarrow x^3=5x\left(x^2-1\right)\Leftrightarrow x=0\) hoặc \(x^2=5\left(x^2-1\right)\).
Từ đây ta được nghiệm \(x=0,\frac{\pm\sqrt{5}}{2}\).
b) Đặt \(a=\sqrt[3]{x-7},b=\sqrt[3]{x-3}\) thì \(a+b=6\sqrt{ab}\). Điều kiện \(ab\ge0.\) Ta chia ra hai trường hợp
Trường hợp 1. Nếu \(x\ge7\) thì \(a,b\ge0\). Chia
cả hai vế cho b, ta được \(\frac{a}{b}=3\pm2\sqrt{2}\) suy ra \(\frac{\sqrt[3]{x-7}}{\sqrt[3]{x-3}}=3-2\sqrt{2}\) (Nghiệm \(3+2\sqrt{2}>1>\frac{a}{b}\)). Từ đó ta được \(x-7=\left(3-2\sqrt{2}\right)^2\left(x-3\right)\Leftrightarrow x-7=\left(17-12\sqrt{2}\right)\left(x-3\right)\Leftrightarrow x=\frac{11-9\sqrt{2}}{4-3\sqrt{2}}.\) (thỏa mãn)
Trường hợp 2. Nếu \(x\le3\) thì \(a,b\le0.\) Chia cả hai vế cho b ta được \(\frac{a}{b}=-3\pm2\sqrt{2}\). Từ đó loại nghiệm vì a/b dương.
Do đó phương trình có nghiệm duy nhất \(x=\frac{11-9\sqrt{2}}{4-3\sqrt{2}}.\)