\(TimXv\text{à}Ya.\left(2-X\right)\left(X+1\right)=|Y+1|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2\(x\) - 1).(2\(x\) - 5) < 0
Lập bảng ta có:
\(x\) | \(\dfrac{1}{2}\) \(\dfrac{5}{2}\) |
2\(x\) - 1 | - 0 + + |
2\(x\) - 5 | - - 0 + |
(2\(x\) - 1).(2\(x\) - 5) | + 0 - 0 + |
Theo bảng trên ta có: \(\dfrac{1}{2}\) < \(x\) < \(\dfrac{5}{2}\)
(3 - 2\(x\)).(\(x\) + 2) > 0
Lập bảng ta có:
\(x\) | -2 \(\dfrac{3}{2}\) |
3 - 2\(x\) | + + 0 - |
\(x\) + 2 | - 0 + + |
(3 -2\(x\)).(\(x\) +2) | - 0 + 0 - |
Theo bảng trên ta có: - 2 < \(x\) < \(\dfrac{3}{2}\)
c, Gọi ƯCLN(a; b) = d; d \(\in\) k
⇒ d = 1944 : 108 = 18
⇒ a = 18.k; b = 18.n (k;n) =1; k;n \(\in\) N*
⇒18.k.18.n = 1944
⇒k.n =1944 : (18.18)
k.n = 6
6 = 2.3 Ư(6) = {1; 2; 3;6)
⇒(k; n) = (1; 6); (2; 3); (3; 2); (6; 1)
⇒ (a; b) = (18; 108); (36; 54); (54; 36); (108; 18)
Vì a> b nên (a; b) = (54; 36); (108; 18)
a, a + b = 72; Ư CLN(a; b) = 9 (a > b)
a = 9.k; b = 9.d (k; d) = 1; k; d \(\in\) N*; k >d
9.k + 9.d = 72
9.(k + d) = 72
k + d = 72 : 9
k + d = 8
(k; d) =(1; 7); (2; 6); (3; 5); (4; 4); (5; 3); (6; 2); (7; 1)
vì (k;d) = 1; k > d ⇒ (k;d) = (5; 3); (7; 1)
⇒ (a; b) = (45; 27); (63; 9)
Giải thích:
Để giải bài toán này, ta sẽ sử dụng các kiến thức về số hạt cơ bản và khối lượng nguyên tử của các nguyên tố.
Lời giải:
a) Gọi số hạt proton, nơtron và electron của nguyên tố X lần lượt là p, n và e.
Theo đề bài, tổng số hạt của nguyên tố X là 40:
p + n + e = 40 (1)
Và số hạt mang điện nhiều hơn số hạt không mang điện là 12:
p + e > n (2)
Từ (1) và (2), ta có thể suy ra số lượng từng loại hạt cơ bản của X.
b) Để xác định tên và kí hiệu tên của nguyên tố X, ta cần biết số hạt proton của nó. Vì số hạt proton chính là số nguyên tử của nguyên tố, nên ta cần tìm giá trị của p.
c) Để tính khối lượng nguyên tử X, ta cần biết khối lượng mỗi hạt cơ bản (proton, nơtron và electron) và số lượng từng loại hạt cơ bản của X.
Lời giải chi tiết cho từng câu hỏi sẽ được cung cấp sau khi có thông tin thêm về số hạt proton của nguyên tố X.
Ez quá <3
B = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) + ... + \(\dfrac{1}{3^{2020}}\) + \(\dfrac{1}{3^{2021}}\) < \(\dfrac{1}{2}\)
3.B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+ ... + \(\dfrac{1}{3^{2019}}\) + \(\dfrac{1}{3^{2020}}\)
3B - B = 1+\(\dfrac{1}{3}\)+ \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{2019}}\) + \(\dfrac{1}{3^{2020}}\) - (\(\dfrac{1}{3}\)+ \(\dfrac{1}{3^2}\)+ ... + \(\dfrac{1}{3^{2020}}\)+\(\dfrac{1}{3^{2021}}\))
2B = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{3^{2019}}\) + \(\dfrac{1}{3^{2020}}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}\)- ...- \(\dfrac{1}{3^{2020}}\)-\(\dfrac{1}{3^{2021}}\)
2B = (1 - \(\dfrac{1}{3^{2021}}\)) + (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3^2}\) - \(\dfrac{1}{3^2}\)) +...+ (\(\dfrac{1}{3^{2020}}\) - \(\dfrac{1}{3^{2020}}\))
2B = 1 - \(\dfrac{1}{3^{2021}}\)
B = (1 - \(\dfrac{1}{3^{2021}}\)) : 2
B = \(\dfrac{1}{2}\) - \(\dfrac{1}{2.3^{2021}}\) < \(\dfrac{1}{2}\) (đpcm)
Chắc phải có thêm điều kiện x; y nguyên nữa chứ em?