Bai 1:Vẽ hình theo các cách diễn đạt sau:
a,Điểm C nằm trên đường thẳng a
b,Điểm B nằm ngoài đường thẳng b
bài 2 :Vẽ hình theo các kí hiệu sau: A thuộc p; B không thuộc q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) a) \(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
b) \(x^2-6=\left(x-\sqrt{6}\right).\left(x+\sqrt{6}\right)\)
c) = \(x^2+2x.\sqrt{3}+\left(\sqrt{3}\right)^2=\left(x+\sqrt{3}\right)^2\)
d) = \(x^2-2x\sqrt{5}+\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)^2\)
Các kí tự không được lặp lại và không tính thứ tự nên các kí tự đều khác nhau
- Kí tự thứ nhất có: 12 cách chọn
- Kí tự thứ hai có: 11 cách chọn
- Kí tự thứ 3 có: 10 cách chọn
......
- Kí tự thứ 8 có 5 cách chọn
Vậy có thể được: 12.11.10....6.5 = ... mã
Goi F la giao diem BH va AC
ta co : goc IAC+goc ACI=90 ( tam giac AIC vuong tai I)
goc FBC+goc ACI=90 ( tam giac BFC vuong tai F)
--> goc IAC=gocFBC
ma goc IAC=goc CBM ( 2goc nt cung chan cung MC cua (O))
nen FBC=CBM--> BI la tia p.g goc HBM
xet tam giac BHM ta co
BI la duong p.g va BI la duong cao ( AI vuong goc BC tai I)
--> tam giac BHM can tai B
ma BI la duong cao
nen BI la duong trung tuyen
-> I la trung diem HM
-> HI=IM
CAch nay dung k co Loan?
A B C H I M O D
Kẻ đường kính AD
*) Chứng minh BHCD là hbh ; từ đó suy ra BH = CD
+) Vì tam giác ABD nội tiếp đường tròn (O) đường kính AD => tam giác ABD vuông tại B => DB vuông góc với AB
Mà CH vuông góc với AB => CH // BD
+) Tương tự ta có AC vuông góc với DC mà BH vuông góc với AC => DC// BH
=> tứ giác BHCD là hbh => BH = CD (1)
*) Tam giác AIB vuông tại I => góc BAM + IBA = 90o
Mặt khác, tam giác ABD vuông tại B => góc ABD = IBA + CBD = 90o
=> góc BAM = CBD
Hơn nữa; góc BAM là góc nội tiếp (O) chắn cung BM; góc CBD là góc nt (O) chắn cung CD
=> dây BM = dây CD (2)
Từ (1)(2) => BH = BM => tam giác BHM cân tại B có BI là đuơng cao nên đông thời là đường trung tuyến => I là trung điểm của HM
=> IH = IM
a + b + c + d = 0
=> a = - b - c - d ; b = - a - c - d; c = - a - b - d
+) a = - b- c - d => ab = -b2 - bc - bd => ab - cd = - b2 - bc - bd - cd = -b(b + c) - d(b + c) = -(b +d)(b +c)
+) b = - a - c - d => bc = -ac - c2 - cd => bc - ad = -ac - c2 - cd - ad = -c(a + c) - d(a+c) = - (c +d)(a+c)
+) c = -a - b - d => ca = -a2 - ab - ad => ca - bd = -a2 - ab - ad - bd = - (a+b).(a+ d)
=> (ab - cd).(bc - ad).(ca - bd) = - (b +d).(b +c).(c+d)(a+c)(a+b)(a+d)
Vì a+ b + c + d = 0 => a + d = - (b + c) và b + d = - (a +c); c+d = - (a + b)
=> (ab - cd).(bc - ad).(ca - bd) = (a+ b)2. (b +c)2. (c +a)2
=> \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(a+b\right)^2.\left(b+c\right)^2\left(c+a\right)^2}=\left|a+b\right|.\left|b+c\right|\left|c+a\right|\)
là số hữu tỉ với a; b; c;d là số hữu tỉ
Toán Văn Anh 8 hs 5 hs 7 hs 5 2 4 3
Từ biểu đồ trên: Tổng số học sinh giỏi (Toán và Văn; Văn và Anh; Anh và Toán) - 3 lần số hs giỏi cả 3 môn ( Toán; Văn; Anh) = Số học sinh chỉ giỏi 2 trong 3 môn
=> Số học sinh giỏi cả 3 môn là: (8 + 5 + 7 - 11) : 3 = 3 học sinh
Từ đo, ta tìm được số hs chỉ giỏi 2 trong 3 môn ( xem hình)
b) Số học sinh chỉ giỏi Toán là: 15 - (4 + 3+ 5) = 3 HS
Số hs chỉ giỏi Văn là : 14 - (5 + 3 + 2)= 4 HS
Số hs chỉ giỏi tiếng Anh là: 12 - ( 4 + 3 + 2) = 3 HS
ĐS:...
Xin lỗi em, bài này chơi chữ quá, thầy không để ý. Lời giải lại:
Để cho gọn ta kí hiệu \(k=\frac{m}{100}\)
Tháng thứ nhất trước khi thêm a đồng; cả vốn lẫn lãi \(\text{a+ak=a(1+k)}\). Do đó sau khi gửi thêm a đồng, thì số tiền tổng là\(a+ak+a=a\left(1+k\right)^1+a\left(1+k\right)^0.\)
Tháng thứ hai trước khi thêm a đồng; cả vốn lẫn lãi \(\text{ a(1+k)+a+a(1+k)k+ak}=a\left(1+k\right)^2+a\left(1+k\right).\)
Sau khi thêm a đồng thì số tiền trong ngân hàng là: \(a\left(1+k\right)^2+a\left(1+k\right).+a\).
....................................................................................
Đến tháng thứ n, thì tổng số tiền là
\(a\left(1+k\right)^n+a\left(1+k\right)^{n-1}.+\cdots+a\left(1+k\right)=a\left(1+k\right)\cdot\left(1+\left(1+k\right)+\cdots+\left(1+k\right)^{n-1}\right)\)
\(=a\left(1+k\right)\cdot\frac{\left(1+k\right)^n-1}{k}.\)
Mình chỉ biết đáp án :
\(\frac{100a}{m}\left[\left(1+0,01m\right)^n-1\right]\)
Bài 1:
Gọi số bé là ab, số lớn là 4ab
Theo bài ra ta có: 4ab+ab=446
=>400+ab+ab=446
=>2.ab=446-400
=>2.ab=46
=>ab=46:2
=>ab=23
=>4ab=423
Vậy 2 số cần tìm là 23 và 423
Bài 2:
Gọi số cầm tìm là ab
Theo bài ra ta có: 3ab=5.ab
=>300+ab=5.ab
=>5.ab-ab=300
=>ab=300:4
=>ab=75
Vậy số cần tìm là 75.
viết thêm chữ số 4 là cộng 400 rồi vẽ sơ đồ tổng và tỉ
Bài 1:
a,
aC
b,
b B
Bài 2:
p A
q B