tính
\(\frac{-1}{3}+\frac{0,2-0,3+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{12}}\)
tìm x :
\(\frac{29-x}{21}+\frac{27-x}{23}+\frac{25-x}{25}+\frac{23-x}{27}+\frac{21-x}{29}=0\)
giúp mình nhé thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng tổng quát: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\) với \(a\ge b\ge0\)
Chứng minh:
Ta có: \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
\(\Rightarrow\)\(\left(\sqrt{a-b}\right)^2\ge\left(\sqrt{a}-\sqrt{b}\right)^2\)
\(\Rightarrow\)\(a-b\ge a+b-2\sqrt{ab}\)
\(\Rightarrow\)\(-2b\ge-2\sqrt{ab}\)
\(\Rightarrow\)\(b\le\sqrt{ab}\)
\(\Rightarrow\)\(b^2\le ab\) luôn đúng do \(a\ge b\ge0\)
Vậy \(\sqrt{a-b}\ge\sqrt{a}-\sqrt{b}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b\)
Bài 1:
a) Gọi hai số cần tìm là a và b \(\left(b\ne0\right)\)
Theo đề bài ta có:
\(a\times b=a:b=a\times\frac{1}{b}\)
Vậy thì \(b=\frac{1}{b}\Rightarrow\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
Với b = 1, ta có: \(a+1=a\) (Vô lý)
Với b = -1, ta có: \(a-1=a\) (Vô lý)
Vậy không có số hữu tỉ thỏa mãn điều kiện.
b)
Gọi hai số cần tìm là a và b \(\left(b\ne0\right)\)
Theo đề bài ta có:
\(a\times b=a:b=a\times\frac{1}{b}\)
Vậy thì \(b=\frac{1}{b}\Rightarrow\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
Với b = 1, ta có 2 trường hợp:
TH1: \(a+1=a\) (Vô lý)
TH2: \(1-a=a\Leftrightarrow a=\frac{1}{2}\)
Với b = -1, ta có 2 trường hợp:
TH1: \(a-1=a\) (Vô lý)
TH2: \(-1-a=a\Leftrightarrow a=-\frac{1}{2}\)
Vậy có hai cặp số thỏa mãn điều kiện: \(\left(-1;-\frac{1}{2}\right);\left(1;\frac{1}{2}\right)\)
Bài 2:
\(\frac{m}{4}-\frac{1}{n}=\frac{1}{2}\Leftrightarrow mn-4=2n\)
\(\Leftrightarrow mn-2n=4\Leftrightarrow n\left(m-2\right)=4\)
Do n nguyên nên \(n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng:
n | - 4 | - 2 | - 1 | 1 | 2 | 4 |
m - 2 | - 1 | - 2 | - 4 | 4 | 2 | 1 |
m | 1 | 0 | -2 | 6 | 4 | 3 |
Vậy các cặp số (m;n) thỏa mãn là: \(\left(1;-4\right);\left(0;-2\right);\left(-2;-1\right);\left(6;1\right);\left(4;2\right);\left(3;4\right)\)
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
Bạn làm theo cách này nhé, sẽ ngắn gọn hơn !
A B C D H
Hạ đường cao AH của \(\Delta\)ABC.
Ta có: ^ADH là góc ngoài của \(\Delta\)ADB => ^ADH = ^ABD + ^BAD = 300 + 150 = 450
Xét \(\Delta\)AHD có: ^AHD=900; ^ADH=450 => \(\Delta\)AHD vuông cân tại H => HD = AH.
Dễ thấy: \(\Delta\)AHB là tam giác nửa đều => AH=1/2.AB => HD=1/2.AB
\(\Delta\)AHC cũng là tam giác nửa đều => HC=1/2.AC
=> HD + HC = 1/2 (AB+AC) => CD = (AB+AC)/2
=> AC + CD = AC + (AB+AC)/2. Do \(\Delta\)ABC nửa đều => AC=BC/2
=> AC + CD = BC/2 + (AB+AC)/2 = CABC/2 (đpcm).
A B C D E I H K
Qua D kẻ đường thẳng vuông góc với BC cắt tia CA tại E. DE giao AB ở I
Gọi H và K lần lượt là hình chiếu của A lên CD và DE
Xét \(\Delta\)BID và \(\Delta\)AIE: ^BDI = ^EAI = 900; ^BID = ^AIE (Đối đỉnh)
=> ^DBI = ^AEI hay ^HBA = ^KEA
Ta có: ^HAB + ^HBA =900; ^KAE + ^KEA = 900. Mà ^HBA=^KEA => ^HAB = ^KAE.
Ta thấy: ^ADC là góc ngoài \(\Delta\)BAD => ^ADC = ^BAD + ^ABD = 300 + 150 = 450
Mà ^CDE = 900 = .^CDE= 2.^ADC => DA là phân giác ^CDE
Do H và K là hình chiếu của A lên CD và DE => AH=AK (T/c đường phân giác)
Xét \(\Delta\)AHB và \(\Delta\)AKE: AH=AK; ^AHB = ^AKE =900; ^HAB = ^KAE (cmt)
=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g) => AB=AE (2 cạnh tương ứng)
Xét \(\Delta\)CDE: ^CDE=900; ^DCE=600 => \(\Delta\)CDE là tam giác nửa đều
= > \(CD=\frac{CE}{2}=\frac{AC+AE}{2}=\frac{AB+AC}{2}\)(Do AB=AE)
\(\Leftrightarrow AC+CD=AC+\frac{AB+AC}{2}\)(1)
Mặt khác \(\Delta\)ABC là tam giác nửa đều => \(AC=\frac{BC}{2}\)(2)
Từ (1) và (2) \(\Rightarrow AC+CD=\frac{BC}{2}+\frac{AB+AC}{2}=\frac{AB+AC+BC}{2}=\frac{C_{\Delta ABC}}{2}\)
=> ĐPCM.
a) Xét tam giác vuông BKC và tam giác vuông CHB có:
\(\widehat{BKC}=\widehat{CHB}=90^o\)
Cạnh BC chung
\(\widehat{KBC}=\widehat{HCB}\) (Do tam giác ABC cân)
\(\Rightarrow\Delta BKC=\Delta CHB\) (Cạnh huyền - góc nhọn)
\(\Rightarrow BK=CH\) (Hai cạnh tương ứng)
b) Do tam giác ABC cân tại A nên AB = AC. Lại có theo câu a thì BK = CH.
Suy ra AK = AB - BK = AC - CH = AH
Vậy AK = AH hay tam giác AKH cân tại A.
c) Do tam giác ABC cân tại A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)
Tam giác AKH cũng cân tại A nên \(\widehat{AHK}=\frac{180^o-\widehat{A}}{2}\)
Suy ra \(\widehat{ACB}=\widehat{AHK}\). Chúng lại ở vị trí đồng vị nên KH // BC.
Vậy nên KHCB là hình thang.
d) Xét tam giác KBN và tma giác HCM có :
KB = HC (cma)
BN = CM (gt)
\(\widehat{KBN}=\widehat{HCM}\) (gt)
\(\Rightarrow\Delta KBN=\Delta HCM\left(c-g-c\right)\)
\(\Rightarrow\widehat{KNB}=\widehat{HMC}=90^o\)
Vậy \(KN\perp BC.\)
29-x/21 + 27-x/23 + 25-x/25 + 23-x/27 + 21-x/29 = -5
1 + 29-x/21 + 1 + 27-x/23 + 1 + 25-x/25 + 1 + 23-x/27 + 1 + 21-x/29 = 0
50-x/21 + 50-x/23 + 50-x/25 + 50-x/27 + 50-x/29 = 0
(50-x) (1/21 + 1/23 + 1/25 + 1/27 + 1/29) = 0
Vì: 1/21 + 1/23 + 1/25 + 1/27 + 1/2 > 0
=> 50 - x = 0
x = 50
Vậy x = 50
\(\frac{-1}{3}+\frac{0,2-0,3+\frac{5}{11}}{-0,3+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{2}{10}-\frac{3}{10}+\frac{5}{11}}{\frac{-3}{10}+\frac{9}{16}-\frac{15}{12}}\)
\(=\frac{-1}{3}+\frac{\frac{39}{110}}{\frac{-79}{80}}\)
\(=\frac{-1}{3}-\frac{312}{869}\)
\(=\frac{-1805}{2607}\)