K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

Xét hiệu: (a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab) = [(a-b)2 - c2 ]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c) = A

Vì a; b;c là 3 cạnh của tam giá => a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

bài làm

Xét hiệu:

(a+ b2 - c2)- 4a2.b2 = (a+ b2 - c2 - 2ab). (a+ b2 - c2 + 2ab)

= [(a-b)2 - c]. [(a+b)- c2]

= (a - b - c).(a - b+ c). (a+ b+ c).(a + b- c)

= A

Vì a; b;c là 3 cạnh của tam giá

=> a+ b > c ; a+ b + c > 0;  a < b + c ; a > b - c

=> a + b - c > 0 ; a+ b + c > 0 ; a - b - c < 0 và a - b + c > 0

=> A < 0 

=> (a+ b2 - c2)<  4a2.b2 

=>ĐpCm

Hok tốt

 

10 tháng 8 2015

Tích 2 số tự nhiên đó là a(a+1)

Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0

Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2

Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm

9 tháng 8 2015

AB < AC 

Mà ABCD là hình vuông có cạnh AB ; AC tức là AB = AC => mâu thuẫn

9 tháng 8 2015

Tam giác ABC vuông ở A=>AB<BC

Mà ABCD là hình vuông =>AB=BC(trái đề bài)

9 tháng 8 2015

 

x^2 - 2xy + y^2 - z^2 

=(x-y)2-z2

=(x-y-z)(x-y+z)

 

29 tháng 5 2021
X^2-2xy+y^2-z^2 =(X-y)2-z2 =(X-y-z)(x-y+z) Hoktot
9 tháng 8 2015

x2-x-y2-y

=(x2-y2)-(x+y)

=(x-y)(x+y)-(x+y)

=(x+y)(x-y-1)

12 tháng 1 2016

x^2-x-y^2-y

=(x^2-y^2)-(x+y)

=(x-y)(x+y)-(x+y)

=(x+y)(x-y-1)

tick nha

8 tháng 8 2015

\(3^{12}+3^{24}+3^{36}=3^{12}\left(1+3^{12}+3^{24}\right)\)

Xét mod 37.

312 = 531441 ≡ 10

324 = (312)2 ≡ 10≡ 26

=> 1 + 312 + 324 ≡ 1 + 10 + 26 = 37 ≡ 0 

=> 312(1+312+324)⋮37

8 tháng 8 2015

Lại chiến tranh tiếp à? 

8 tháng 8 2015

x3-7x2+36<0

<=>(x2+2x)-(9x2-36)<0

<=>x(x+2)-9(x-2)(x+2)<0

<=>(x+2)[x-9(x-2)]<0

<=>(x+2)(18-8x)<0

<=> x+2>0 18-8x<0 hoặc x+2<0 18-8x>0

<=>x>-2 x>2,25 hoặc x<-2 x<2,25

<=>x>2,25 hoặc x<-2

8 tháng 8 2015

Có \(2^{3^{9000}}=2^{3^2.\left(3^2\right)^{4499}}=\left(2^{3^2}\right)^{9^{4499}}=512^{9^{4499}}\)

=> A = \(\left(512.47\right)^{9^{4499}}+1001^{20000}=24064^{9^{4499}}+1001^{20000}\)

Ta có: \(24064^{9^{4499}}\) đồng dư với \(64^{9^{4499}}\) ( mod 1000)

+) xét: 9 đồng dư với 1 (mod 20) => 94499 = (92)2249 .9 đồng dư với 1.9 = 9 ( mod 20)

=> 94499 = 20k + 9 

=> \(64^{9^{4499}}=\left(2^6\right)^{20k+9}=\left(2^{20}\right)^{6k}.2^{6.9}=\left(2^{20}\right)^{6k+2}.2^{14}\)

Mà 220 đồng dư với 576 (mod 1000) nên \(64^{9^{4499}}=\left(2^{20}\right)^{6k+2}.2^{14}\) đồng dư với 576.16384 = 9 437 184 (mod 1000)

=> \(64^{9^{4499}}\) đồng dư với 184 mod 1000

=> \(24064^{9^{4499}}\) đồng dư với 184 (mod 1000)

+) ta có: 100120 000 đồng dư với 120 000 = 1 (mod 1000)

=> A  đồng dư với 184 + 1 = 185 (mod 1000)

Vậy 3 chữ số tận cùng của A là 185

8 tháng 8 2015

Gọi số đó là abcd 

abcd là số chính phương nên đặt abcd = m

Theo bài cho số (a +1)(b+3)(c+5)(d+3) là số chính phương nên đặt (a +1)(b+3)(c+5)(d+3) = n(  31 < m < n < 100 do các số là đã cho là số chính phương có 4 chữ số)

Ta có: (a +1)(b+3)(c+5)(d+3) = 1000(a+1) + 100(b +3) + 10(c +5) + (d+3)

= abcd + 1000 + 300 + 50 + 3 = abcd + 1353

=> n- m= 1353

=> (n -m).(n +m)= 3.11.41 = 33.41 = 3.451 = 11.123

Do điều kiện của m; n nên 62 < m + n < 200 

=> n - m = 11; n + m = 123 

=>m = 56 => abcd = 3136

Vậy...