?5:tinh
\(a,\left(0,125\right)^3.8^3\)
\(b,\left(-39\right)^4:13^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
So sánh A = (9/11 - 0,81)^2005 và B = 1/(10)^4010
ta được A =B =0
chúc bạn học tốt
ơi bạn hoang thi kim hãy giải thích kặn kẻ hơn được không, nếu mình thấy đúng sẽ cho một k
Gọi tam giác đó vuông cân tại A, 2 góc ở đáy là B và C
Áp dụng định lý Pytago ta có :
BC^2 = AB^2 + AC^2
hay BC^2 = 7^2 + 7^2 = 98
=> BC = \(\sqrt{98}\)
Vậy,...........
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2017}\Rightarrow x+1=2017\Rightarrow x=2016\)
Vậy x = 2016
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2017}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2017}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2017}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2016\)
Vậy \(x=2016\)
Chu vi tam giác ABC bằng: 5 + 6 + 8 = 19 (cm)
Dễ dàng thấy ngay \(\Delta ABE=\Delta BAC\left(g-c-g\right)\)
Vậy nên \(P_{ABE}=P_{BAC}=19cm.\)
Ta thấy \(\Delta BCD=\Delta CBA\left(g-c-g\right)\)
Vậy nên \(P_{BCD}=P_{CBA}=19cm.\)
Ta thấy \(\Delta ACF=\Delta CAB\left(g-c-g\right)\)
Vậy nên \(P_{ACF}=P_{CBA}=19cm.\)
\(P_{DEF}=DE+EF+FD=2.8+2.6+2.5=38cm.\)
I don't now
sorry
.....................
Đo và thấy rằng AC = 8 cm, AB = 8 cm.
Từ đó ta có nhận xét:
+ Tam giác ABC vuông cân tại C, AB = AC = 8 cm.
+ \(AB^2=CA^2+CB^2\)
\(\left(1-2x\right)3=27\)
\(3-6x=27\)
\(6x=3-27\)
\(6x=-24\)
\(x=-24:6\)
\(x=-4\)
( 1 - 2x ) x 3 = 27
( 1 - 2x ) = 27 : 3
( 1 - 2x ) = 9
<=> 1 - 2x = 9
<=> 2x = ( 9 + 1 )
<=> 2x = 10
<=> x = 10 : 2 = 5
=> x = 5
a, (0,125.8)3 =13 =1
b. (-39 :13)4 = (-3)4 =81
\(a,\left(0,125\right)^3.8^3\)
\(=\left(0,125.8\right)^3\)
\(=1^3\)
\(=1\)
\(b,\left(-39\right)^4:13^4\)
\(=\left(-39:13\right)^4\)
\(=-3^4\)
\(=81\)