1) cho x>0 và 4x2+2x=\(\sqrt{2}\) tính \(S=\frac{x+1}{\sqrt{x^4+x+1}-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C.\sqrt{2}=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}=\sqrt{7}-1-\sqrt{7}-1=-2\)
=> \(C=-\sqrt{2}\)
\(D.\sqrt{2}=\sqrt{8-2\sqrt{7}}+\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{7}-1+\sqrt{3}-1\)
=> \(D=\frac{\sqrt{7}+\sqrt{3}-2}{\sqrt{2}}\)
\(C=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
\(\Rightarrow\sqrt{2}.C=\sqrt{2}\sqrt{4-\sqrt{7}}-\sqrt{2}\sqrt{4+\sqrt{7}}\)
\(=\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)
\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(=\sqrt{7}-1-\left(\sqrt{7}+1\right)\)
\(=\sqrt{7}-1-\sqrt{7}-1=-2\)
\(\Rightarrow C=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)
\(D=\sqrt{4-\sqrt{7}}+\sqrt{2-\sqrt{3}}\)
\(\Rightarrow\sqrt{2}.D=\sqrt{2}\sqrt{4-\sqrt{7}}+\sqrt{2}\sqrt{2-\sqrt{3}}\)
\(=\sqrt{8-2\sqrt{7}}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{7-2\sqrt{7}+1}+\sqrt{3-2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{7}-1+\sqrt{3}-1\)
\(=\sqrt{7}+\sqrt{3}-2\)
\(\Rightarrow D=\frac{\sqrt{7}+\sqrt{3}-2}{\sqrt{2}}=\frac{\sqrt{14}+\sqrt{6}-2\sqrt{2}}{2}\)
\(ĐKx\ge1\)
VT \(\ge\sqrt{1-1}+\sqrt{1+3}+2\sqrt{\left(1-1\right)\left(1^2-3.1+5\right)}=0+2+0=2\)
VP \(\le4-2.1=2\)
=> VT = VP = 2
Vậy x = 1
\(17^2-15^2=289-225=64=2^6=4^3=8^2=\)
\(4^3-2^3+5^2=64-8+25=81=3^4=9^2\)
Ta xét số hạng tổng quát có dạng \(\frac{2x+1}{\left(x^2+x+1\right)^2+1}=\frac{2x+1}{\left(x^2+1\right)\left(x^2+2x+2\right)}=\frac{1}{x^2+1}-\frac{1}{\left(x+1\right)^2+1}\).
Lần lượt cho \(x=0,1,2,\ldots,2012\) rồi cộng lại ta sẽ được kết quả là \(1-\frac{1}{2013^2+1}\)
Điều kiện: \(2\le x\le6\)
Bình phương cả 2 vế ta được:
\(x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
<=> \(4+2\sqrt{-x^2+8x-12}=x^2-8x+24\) (*)
Đặt \(t=\sqrt{-x^2+8x-12}\left(t\ge0\right)\) => \(t^2=-x^2+8x-12=-\left(x^2-8x+24\right)+12\)
Phương trình (*) trở thành: 4 + 2t = 12 - t2
<=> t2 + 2t - 8 = 0
<=> (t +4).(t - 2) = 0 <=> t = 2 hoặc t = -4
t = 2 thỏa mãn
=> -x2 + 8x - 12 = 4
<=> -x2 + 8x - 16 = 0 <=> -(x - 4)2 = 0 <=> x = 4 (thỏa mãn)
Vậy x = 4 là nghiệm của pt
A B O M H K m n a b x y
Kẻ MH; MK lần lượt vuông góc với Ox; Oy. Đặt MH = b; MK = a; HA = m; KB = n
+) Tam giác BKM đồng dạng với tam giác MHA (g- g) => BK / KM = MH / HA => n/a = b/ m => ab = m.n
a) S(AOB) = OA.OB/ 2
Ta có: OA = a + m ; OB = b + n
=> OA. OB = (a + m).(b + n) = ab + an + bm + mn = (ab + mn) + (an + bm)
= 2ab + (an + bm) \(\ge\) 2ab + \(2\sqrt{an.bm}\) = 2ab + \(2\sqrt{\left(ab\right)^2}\) = 4ab = hằng số ( M cố định nên a.b = MK.MH không đổi)
Dấu "=" xảy ra <=> an = bm => (an)2 = an.bm = (ab).(mn) = (mn)2 => a = m => H là trung điểm của OA
Vậy S(AOB) nhỏ nhất bằng 4ab khi H là trung điểm của OA
=> Vị trí đường thẳng d: d đi qua M và A, trong đó: A thuộc Ox sao cho H là trung điểm của OA
b) OA + OB = a + m + b + n = (a+ b) + (m + n) \(\ge\) a+ b + \(2\sqrt{mn}\) = a+ b + \(2\sqrt{ab}\) = \(\left(\sqrt{a}+\sqrt{b}\right)^2\) (vì m.n = ab)
Dấu "=" xảy ra <=> m = n => ab = n2
vậy OA + OB nhỏ nhất bằng \(\left(\sqrt{a}+\sqrt{b}\right)^2\) khi n2 = ab
+) Xác định vị trí của d sao cho n2 = ab = KB2
A B O M H K m n a b x y a P D
Cách dựng:
- Dựng đường tròn đường kính OK
- Trên đoạn OK , dựng KD = a. Qua D kẻ đường vuông góc với OK cắt đường tròn đường kính OK tại P
- Dựng đường tròn tâm K , bán kính KP cắt Oy tại B
- Đường thẳng đi qua B và M chính là đường thẳng d cần xác định
Chứng minh: Áp dụng hệ thức lượng trong tam giác vuông OPK có: KP2 = KD. KO = a.b
Mà KP = KB = n => n2 = ab
Vậy....