Tính:
A=\(1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+\frac{1}{4}.\left(1+2+3+4\right)+....+\frac{1}{16}.\left(1+2+.....+16\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6S = 1.3(5 - 1) + 3.5(7 - 1) + 5.7(9 - 3) + ... + 99.101(103 - 97)
6S = 1.3 + 1.3.5 - 1.3.5 + 3.5.7 - 3.5.7 +..... - 97.99.101 + 99.101.103
6S = 3 + 99.101.103
6S = 3 + 1029897
6S = 1029900
S =1029900 : 6
S = 171650
Ta có S=1.(1+2)+3.(3+2)+5.(5+2)+....+99.(99+2)
=1.1+3.3+5.5+....+99.99 +1.2+3.2+5.2+...+99.2
=12+32+52+...+992+2.(1+3+5+....+99 )
=1.(2-1)+3.(4-1)+5.(6-1)+...+99.(100-1)+2.(1+3+5+...+99)
=1.2+3.4+5.6+...+99.100-1-3-5-....-99+2.(1+3+5+...+99)
=1.2+3.4+5.6+...+99.100+(1+3+5+...+99)
Xét 1.2+3.4+5.6+...+99.100 = (2-1).2+(4-1).4+(6-1).6+....+(100-1).100
=2.2+4.4+6.6+100.100-2-4-6-...-100
=22+42+62+...+1002-(2+4+6+...+100)
=22.(12+22+32+...+502)-(100+2).50:2
=22.22100-2550 ( bạn tự làm thêm 12+22+...+1002=22100 nhé )
=85850
Do đó S= 85850-(99+1).50:2=85850-2500=83350
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
(3x-4)2 = 36
=> (3x-4)2 = 62
=> 3x-4 = 6
=> 3x = 10
=> x = 10/3
~~~k mk nha! ~~~
Môn gì bạn ?
Trang bao nhiêu ?
Bạn viết luôn đề bài ra cho rõ !
là sao vậy bn
bn phải ghi đầy đủ ra chứ
ai thấy đúng thì k nha!!!!
a/b = b/c= c/a = a+b+c / a+b+ c = 1
vậy nên a= b=c
PS : áp dụng công thức a/b = b/c = a+b/b+c
em lớp 6 làm nhé
Đk \(a,b,c\ne0\)
Đặt: \(k=\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
=> \(\hept{\begin{cases}a=bk\\b=ck\\c=ak\end{cases}}\) (1)
=> \(a=bk=\left(ck\right)k=c.k^2=\left(ak\right).k^2=a.k^3\)
Do \(a\ne0\) nên từ \(a=a.k^3\Rightarrow k^3=1\Rightarrow k=1\)
Thay vào (1) suy ra \(a=b=c\)
1) a) Ta có \(\left(x-2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
\(\left(z+4\right)^6\ge0\)
mà \(\left(x-2\right)^2+\left(y+3\right)^4+\left(z+4\right)^6=0\)
nên \(x-2=0\Rightarrow x=2\)
\(y+3=0\Rightarrow y=-3\)
\(z+4=0\Rightarrow z=-4\)
b) \(3x=2y\Rightarrow x=\frac{2y}{3}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow z=\frac{4y}{5}\)
Do đó \(x+y+z=-3,9\)
hey \(\frac{2y}{3}+\frac{4y}{5}+y=-3,9\)
giải tìm ra y thế vào lại để tìm x,z
2)
a)
\(-\frac{5}{4}-\frac{-7}{12}+\frac{-2}{3}+\frac{5}{6}-\frac{3}{2}=-\frac{15}{12}+\frac{7}{12}-\frac{8}{12}+\frac{10}{12}-\frac{18}{12}=\frac{-15+7-8+10-18}{12}\)
\(=-\frac{24}{12}=-2\)
b) \(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)
\(\Rightarrow S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{101}}\)
\(\frac{1}{2}S=\frac{2^{100}-1}{2^{101}}\)
\(S=\frac{2^{100}-1}{2^{100}}\)
Ta có : \(\left(x-2\right)^2\ge0\forall x\)
\(\left(y+3\right)^4\ge0\forall y\)
\(\left(z+4\right)^2\ge0\forall z\)
Mà : ( x - 2 )2 + ( y + 3 )4 + ( z + 4 )6 = 0
Nên : pt <=> x - 2 = 0
y + 3 = 0
z + 4 = 0
<=> x = 2
y = -3
z = -4
A = 1 + 1/2.(1+2) + 1/3.(1+2+3) + 1/4.(1+2+3+4) + ...+ 1/16.(1+2+....+16)
A = 1 + 1/2.3 + 1/3.6 + 1/4.10 + ...+ 1/16.136
A = 1 + 3/2 + 4/2 + 5/2 + ....+ 17/2
A = 1 + (3+4+5+...+17)/2
A = 1 + 150/2
A = 1 + 75
A = 76
A = 1 + 1/2.(1+2) + 1/3.(1+2+3) + 1/4.(1+2+3+4) + ...+ 1/16.(1+2+....+16)
A = 1 + 1/2.3 + 1/3.6 + 1/4.10 + ...+ 1/16.136
A = 1 + 3/2 + 4/2 + 5/2 + ....+ 17/2
A = 1 + (3+4+5+...+17)/2
A = 1 + 150/2
A = 1 + 75
A = 76