Tính giá trị các đa thức sau tại x=-1x=−1?
a) P(x)=x^2 + x^4 + x^6 + x^8 + ... + x^{92}P(x)=x2+x4+x6+x8+...+x92.
P(-1)=P(−1)=.
b) Q(x)=x + x^3 + x^5 + x^7 + ... + x^{93}Q(x)=x+x3+x5+x7+...+x93.
Q(-1)=Q(−1)=.
helppp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề : Một hình chữ nhật có chu vi bằng 80 cm. Tăng chiều rộng lên 3cm; tăng chiều dài lên 5 cm thì diện tích tăng thêm 195 cm^2.
Tìm chiều dài và chiều rộng ban đầu.
\(x^2-2=0\)
=> \(x^2=2\)
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
\(\left(4x-3\right)\left(5+x\right)=0\)
=> \(\orbr{\begin{cases}4x-3=0\\5+x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=-5\end{cases}}\)
xét tam giác ABH và tam giác ACK có
AB=AC
góc AHB=góc AKC=90độ
góc A là góc chung
suy ra tam giác ABH = TAM GIÁC ACK (cạnh huyền - góc nhọn)
B;
do tam giác ABH= tam giác ACK
suy ra BH=CK (hai cạnh tương ứng)
- Để làm rõ đức tính giản dị của Bác Hồ, tác giả đã chứng minh ở những phương diện:
+ Bữa ăn hàng ngày
+ Nhà ở
+ Việc làm
+ Lời nói, bài viết.
bài này con làm và được chữa rồi ạ !
Giải :
Để làm rõ đức tính giản dị của bác tác giả Phạm Văn Đồng đã chứng minh ở những phương diện :
-Đời sống sinh hoạt hàng ngày :+Bữa cơm
+Ngôi nhà
+Công việc và quan hệ với mọi người
-Lời nói , bài viết
a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)
\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :
\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)
Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)
b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB
Xét \(\Delta ADB\) và \(\Delta ADE\)có :
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB = AE(gt)
=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)
Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)
Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)
Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)
Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))
Vậy DB < DC hay DC > DB