1 ) Tính giá trị biểu thức : 215 . 94 / 66 . 83
2 ) Chứng minh : 106 - 5x chia hết cho 59
3 ) Tính :
a ) ( 2x - 1 )4 = 81
b ) 5x + 5x +2 = 650
4 ) Chứng minh :
3 / 12 . 22 + 5 / 22 . 32 + 7 / 32 . 42 + ... + 19 / 92 . 102 < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
vì \(|x|=1,25\Rightarrow x=1,25\)
\(x-y=1,25-\left(-0,75\right)=1,25+0,75=2\)
tk mk 1,5 k thôi vì mk làm được 1 câu.
ihi. ~HỌC TÔT~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,225\approx1,23\)
---------------------------
-----------------------------
\(1,225\approx1,23\)
Hoặc :
\(1,225\approx1,22\)
Chọn cái nào cũng được.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(13+x\right)\left(17+x\right)\left(2-x\right)\le0\)
Nếu \(x< -17\), ta có 13 + x < 0, 17 + x \(\le\) 0, 2 - x > 0
Vậy nên A \(>\) 0,
Nếu \(-17\le x\le-13\), ta có: 13 + x < 0 , 17 + x > 0, 12 - x > 0. Vậy thì \(A\le0\)
Nếu \(-13< x< 2\), ta có: 13 + x > 0, 17 + x > 0, 2 - x > 0. Vậy nên \(A>0\)
Nếu \(x\ge2\) , ta có \(13+x>0,17+x>0,2-x\ge0\). Vậy nên \(A\le0\)
Vậy để \(A\le0\) thì \(-17\le x\le-13\) hoặc \(x\ge2.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
X. ( X - 1) . X ( X - 1 ) = ( X - 2) XX ( X - 1)
X . X - X . 1 . X . X - X . 1 = X . X - X . 2 . X . X - X . 1
2X - X . 1 . 2X - X . 1 = 2X - X. 2 . 2X - X
2 . 1 . 2 . 1 = 2 . 2 . 1
4 = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: \(ax=by=cz\Rightarrow x:\frac{1}{a}=y:\frac{1}{b}=z:\frac{1}{c}=\frac{x}{\frac{1}{a}}=\frac{y}{\frac{1}{b}}=\frac{z}{\frac{1}{c}}=k.\)
\(\Rightarrow\hept{\begin{cases}x=\frac{k}{a}\\y=\frac{k}{b}\\z=\frac{k}{c}\end{cases}}\)
mà xyz = 8/abc \(\Rightarrow\frac{k}{a}\cdot\frac{k}{b}\cdot\frac{k}{c}=\frac{k^3}{abc}=\frac{8}{abc}\Rightarrow k^3=8=2^3\Rightarrow k=2\)
=> x = 2/a; y = 2/b; z = 2/c
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
2
a) (2x - 1)4 = 81
<=> \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=4\\2x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)