\(\sqrt{x+\frac{1}{x^2}}+\sqrt{x-\frac{1}{x^2}}>\frac{2}{x}\)\(\frac{2}{x}\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NV
0
DH
1
11 tháng 3 2019
P= \(1-cos^2x+2cos^2x=1+cos^2x\)
Ta có:
\(0\le cos^2x\le1\)
=> \(1\le P\le2\)
min P=1 <=> \(cos^2x=0\Leftrightarrow cosx=0\Leftrightarrow x=\frac{\pi}{2}+k\pi\)
DH
1
11 tháng 3 2019
ta có:
\(-1\le\sin x\le1\)
=> \(3.\left(-1\right)-2\le P\le3.1-2\)
suy ra: \(-5\le P\le1\)
\(maxP=1\)<=> sin x=1<=> \(x=\frac{\pi}{2}+k2\pi\)
LQ
5
TT
0