K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

Tròi vậy cũng hỏi 

13 tháng 9 2015

Áp dụng bất đẳng thức Bunhiacopxki ta có: (x+ y) \(\le\) (x2 + y2) .(12 + 12) => 4 \(\le\) 2.S => 2 \(\le\) S

Dấu "=" xảy ra <=> x = y = 1

Vậy GTNN của S là 2 tại x = y = 1

13 tháng 9 2015

Xét hiệu:

(ac + bd)2 - (a2 + b2)(c2 + d2) = a2c2 + 2acbd + b2d2 - (a2c2 + a2d2 + b2c2 + b2d2) = - a2d2 + 2abcd - b2c2

= - [(ad)2 - 2ad.bc + (bc)2] = - (ad - bc)2 \(\le\) 0 với mọi a; b; c;d

=> bất đẳng thức cần chứng minh

Dấu "=" xảy ra <=> ad = bc 

 

13 tháng 9 2015

Đây là BĐT Bu-nhi-a-cốp-xki mà.

13 tháng 9 2015

G/s căn 6 là số hữ tỉ 

=> căn 6 = a/b ( trong đó UCLN(a;b) = 1

=> 6 = a^2/b^2 

=> a^2 = 6b^2 => a^2 chia hết cho 6 

=> a chia hết cho 6 (1)

a chia hết cho 6 => a = 6t 

=>  36t^2  = 6b^2 => b^2 = 6t^2 

=> b chia hết cho 6 (2)

Từ (1) và (2) => a ; b có một ước là 6 trái với g/s 

=> căn 6 là số hữu tỉ 

13 tháng 9 2015

số vô tỉ là chi z mý bn????????? 

13 tháng 9 2015

 trong câu hỏi tương tự 

13 tháng 9 2015

mới dậy?        

13 tháng 9 2015

kiến thức không bao giờ biết hết được, có thể một số bài bạn ấy biết nhưng có thể một số bài bạn ấy không biết

13 tháng 9 2015

hình như nó ko onl thì phải

13 tháng 9 2015

B1. Cho tam giác abc vuông tại a, đường cao ah , ab = 3cm, bc =6cm

A. Giải tam giác vuông abc

B. Gọi e,f lần lượt là hình chiếucuar h trên cạnh ab và ac

a) tính độ dài ah và chứng minh ah = ef

b) tính : ea . eb + af . fc 

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

12 tháng 9 2015

x2 + y2 + 2x + 2y = 11 <=> (x2 + 2x) + (y2 + 2y) = 11 <=> x(x + 2) + y(y +2) = 11

xy(x+2)(y+2) = m <=> [x(x+2)].[y(y+2)] = m

đặt a = x(x+2); b = y(y +2)

Khi đó ta có hệ phương trình: a + b = 11; ab = m

Theo hệ thức Vi ét đảo => a; b là ngiệm của phương trình t2 - 11t + m = 0   (*)

a) khi m = 24 .

(*) <=> t2 - 11t + 24 = 0 <=> t- 3t - 8t + 24 = 0 <=> (t - 3).(t - 8) = 0 <=> t = 3 hoặc t = 8

=> a = 8 ; b = 3 hoặc a = 3; b = 8

+) a =8 => x(x+2) = 8 => x2 + 2x - 8 = 0 => (x+1)2 = 9 <=> x + 1 = 3 hoặc x+ 1 = -3 <=> x = 2 hoặc x = -4

b = 3 => y(y +2) = 3 <=> y+ 2y - 3 = 0 <=> (y +1)= 4 => y + 1 = 2 hoặc y + 1 = -2 => y = 1 hoặc y = -3

tương tự, a = 3; b = 8

Vậy nghiệm của hệ là (x; y) = (2;1)(2;-3)(-4;1); (-4;-3) ; (1;2); (-3;2); (1;-4); (3;-4)

b)  Vì a = x(x+2) => x2 + 2x = a <=> (x+1)= a+ 1; b = y(y + 2) => (y +1)2  = b + 1

=> a+ 1 \(\ge\) 0 và b+ 1 \(\ge\) 0 <=> a ; b \(\ge\) -1

Để hệ có nghiệm <=>  (*) có 2  nghiệm t1; t2   \(\ge\) -1 

<=> \(\Delta\) \(\ge\) 0 ; t1 \(\ge\) -1; t2 \(\ge\) -1

+) \(\Delta\) \(\ge\) 0 <=> 121 - 4m \(\ge\) 0 <=> 30,25 \(\ge\) m

+)  t1 \(\ge\) -1; t2 \(\ge\) -1 <=> t1 +1 \(\ge\) 0 ; t2 + 1 \(\ge\) 0 

<=> (t1 + 1) + (t2 + 1) \(\ge\) 0 và (t1 + 1)(t2 + 1) \(\ge\) 0

Theo hệ thức Vi ét ta có : t1 + t = 11/2 = 5,5; t1.t2 = m 

Suy ra (t1 + 1) + (t2 + 1)  =7,5  \(\ge\) 0  (đúng) và (t1 + 1)(t2 + 1) = t1.t2 + (t+ t2) + 1 = m + 5,5 + 1 = m + 6,5  \(\ge\) 0 => m \(\ge\) - 6 ,5 

Vậy để hệ có nghiệm <=> -6,5 \(\le\) m \(\le\) 30,25