Cho x+y=a và x^3+y^3=b. Tính x^2+y^2 (Theo a;b)
#Toán lớp 8Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6: Ta có:
\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)
\(\Leftrightarrow4x^2+y^2+z^2-4xy-4xz+2yz+y^2-6y+9+z^2-10z+25=0\)
\(\Leftrightarrow\left[\left(2x\right)^2+y^2+z^2-2\cdot2x\cdot y-2\cdot2x\cdot z+2\cdot y\cdot z\right]+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
Mà: \(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\forall x,y,z\)
Mặt khác: \(\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y-z=0\\y-3=0\\z-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3-5=0\\y=3\\z=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=8\\y=3\\z=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\\z=5\end{matrix}\right.\)
Thay vào S ta có:
\(S=\left(4-4\right)^{2023}+\left(3-4\right)^{2025}+\left(5-4\right)^{2027}=0-1+1=0\)
Câu 1: Đơn thức là: \(3xy^2z^3\)
⇒ Chọn D
Câu 2: Hai đơn thức đồng dạng là: \(\dfrac{1}{2}x^2y^2\) và \(-3x^2y^2\)
⇒ Chọn C
Câu 3: Hằng đẳng thức là: \(3\left(x+y\right)=3x+3y\)
⇒ Chọn B
Câu 4: \(x^2-...=\left(x-4\right)\left(x+4\right)\Rightarrow x^2-...=x^2-4^2\text{⇒}...=4^2=16\)
⇒ Chọn A
\(A=8.\left(3^2+1\right)\left(3^4+1\right)....\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)....\left(3^{16}+1\right)\\ =\left(3^8-1\right)....\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)
A = 8.(3² + 1)(3⁴ + 1)(3⁸ + 1)(3¹⁶ + 1)
= (3² - 1)(3² + 1)(3⁴ + 1)(3⁸ + 1)(3¹⁶ + 1)
= (3⁴ - 1)(3⁴ + 1)(3⁸ + 1)(3¹⁶ + 1)
= (3⁸ - 1)(3⁸ + 1)(3¹⁶ + 1)
= (3¹⁶ - 1)(3¹⁶ + 1)
= 3³² - 1
a) Ta có:
AH là đường cao của ∆ABC (gt)
⇒ AH ⊥ BC
Lại có:
MN ⊥ AH (gt)
⇒ MN // BC
Tứ giác BCMN có:
MN // BC (cmt)
⇒ BCMN là hình thang
b) Do MN // BC (cmt)
⇒ ∠NMB = ∠MBC (so le trong)
Do BM là tia phân giác của ∠ABC (gt)
⇒ ∠ABM = ∠MBC
⇒ ∠NBM = ∠MBC
Mà ∠NMB = ∠MBC (cmt)
⇒ ∠NBM = ∠NMB
∆BMN có:
∠NBM = ∠NMB (cmt)
⇒ ∆BMN cân tại N
⇒ BN = MN
M=(a+b)(a2-ab+b2)+3ab(1-2ab)+6a2b2
M=a2-ab+b2+3ab
M=(a+b)2=1
Lời giải:
$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$
$=(3x+y)^2-2(3x+y)+y^2+6y+17$
$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$
$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$
Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$
$\Leftrightarrow y=-3; x=\frac{4}{3}$
$A$ không có max bạn nhé.
Giải:
a, đa thức tính diện tích mảnh đất trồng rau là:
S = \(x.x\) (m2)
S = \(x^2\) (m2)
b,Theo bài ra ta có: \(x^2\) = 96
\(\) \(\left[{}\begin{matrix}x=4\sqrt{6}\\x=-4\sqrt{6}\end{matrix}\right.\)
Vì \(x\) > 0 nên \(x\) = 4\(\sqrt{6}\)
Kết luận: cạnh của khu vườn có độ dài là: 4\(\sqrt{6}\)(m)
(\(x+y\)) = a; (\(x^3\) + y3) = b.
\(x^3\) + y3 = (\(x\) + y).(\(x^2\) - \(xy\) + y2) (1)
Thay \(x\) + y = a; \(x^3\) + y3 = b vào biểu thức (1) ta có:
a.(\(x^2\) - \(xy\) + y2) = b
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\)
\(x^2\) + 2\(xy\) + y2 - 3\(xy\) = \(\dfrac{b}{a}\)
(\(x+y\))2 - 3\(xy\) = \(\dfrac{b}{a}\)
a2 - 3\(xy\) = \(\dfrac{b}{a}\)
3\(xy\) = a2 - \(\dfrac{b}{a}\)
\(xy\) = (\(a^2\) - \(\dfrac{b}{a}\)): 3
\(xy\) = \(\dfrac{a^3-b}{3a}\)
Thay \(xy\) = \(\dfrac{a^3-b}{3a}\) vào biểu thức:
\(x^2\) - \(xy\) + y2 = \(\dfrac{b}{a}\) ta có
\(x^2\) - \(\dfrac{a^3-b}{3a}\)+ y2 = \(\dfrac{b}{a}\)
\(x^2\) + y2 = \(\dfrac{b}{a}\) + \(\dfrac{a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{3b+a^3-b}{3a}\)
\(x^2\) + y2 = \(\dfrac{a^3+2b}{3a}\)